
MINOS: A Solver for Large-Scale
Nonlinear Optimization Problems

Bruce A. Murtagh; Graduate School of Management, Macquarie University, Sydney, Australia

Michael A. Saunders, Walter Murray; Department of EESOR, Stanford University, CA

Philip E. Gill; Department of Mathematics, University of California, San Diego, La Jolla, CA

Ramesh Raman, Erwin Kalvelagen; GAMS Development Corporation, Washington D.C.

Contents

1 Introduction . 1

2 How to Run a Model with GAMS/MINOS . 1

3 Overview of GAMS/MINOS . 2

3.1 Linear Programming . 2

3.2 Problems with a Nonlinear Objective . 3

3.3 Problems with Nonlinear Constraints . 4

4 Modeling Issues . 5

4.1 Starting Points . 5

4.2 Bounds . 7

4.3 Scaling . 7

4.4 The Objective Function . 7

5 GAMS Options . 8

5.1 Options Specified through the Option Statement . 8

5.2 Options Specified through Model Suffixes . 9

6 Summary of MINOS Options . 10

6.1 Output Related Options . 10

6.2 Options Affecting Tolerances . 10

6.3 Options Affecting Iteration Limits . 11

6.4 Other Algorithmic Options . 11

6.5 Examples of GAMS/MINOS Option File . 11

7 Special Notes . 12

7.1 Modeling Hints . 12

7.2 Storage . 12

8 The GAMS/MINOS Log File . 13

8.1 Linear Programs . 13

8.2 Linearly Constrained NLP’s . 14

8.3 NLP’s with Nonlinear Constraints . 15

9 Detailed Description of MINOS Options . 16

10 Exit Conditions . 27

2 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

1 Introduction

This document describes the GAMS interface to MINOS which is a general purpose nonlinear programming solver.

GAMS/MINOS is a specially adapted version of the solver that is used for solving linear and nonlinear programming
problems in a GAMS environment.

GAMS/MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem must be
smooth (i.e., their first derivatives must exist). The functions need not be separable. Integer restrictions cannot
be imposed directly.

A certain region is defined by the linear constraints in a problem and by the bounds on the variables. If the
nonlinear objective and constraint functions are convex within this region, any optimal solution obtained will be
a global optimum. Otherwise there may be several local optima, and some of these may not be global. In such
cases the chances of finding a global optimum are usually increased by choosing a staring point that is sufficiently
close, but there is no general procedure for determining what close means, or for verifying that a given local
optimum is indeed global.

GAMS allows you to specify values for many parameters that control GAMS/MINOS, and with careful experimen-
tation you may be able to influence the solution process in a helpful way. All MINOS options available through
GAMS/MINOS are summarized at the end of this document.

2 How to Run a Model with GAMS/MINOS

MINOS is capable of solving models of the following types: LP, NLP, DNLP and RMINLP. If MINOS is not
specified as the default LP, NLP, DNLP or RMINLP solver, then the following statement can be used in your
GAMS model:

option nlp=minos; { or lp or dnlp or rminlp }

or

option nlp=minos55; { or lp or dnlp or rminlp }

It should appear before the solve statement.

This will invoke MINOS 5.5. In some cases an older version of MINOS, version 5.4 is more efficient than the newer
version. MINOS 5.4 can be selected by:

option nlp=minos5; { or lp or dnlp or rminlp }

To be complete, we mention that this can be also specified on the command line, as in:

> gams camcge nlp=minos

This will override the global default, but if an algorithm option has been specified inside the model, then that
specification takes precedence.

3 Overview of GAMS/MINOS

GAMS/MINOS is a system designed to solve large-scale optimization problems expressed in the following form:

NLP minimize
x,y

F (x) + cT x + dT y (1)

subject to f(x) + A1y ∼ b1 (2)
A2x + A3y ∼ b2 (3)

` ≤
(

x
y

)
≤ u (4)

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 3

where the vectors c, d, b1, b2, `, u and the matrices A1, A2, A3 are constant, F (x) is a smooth scalar function,
and f(x) is a vector of smooth functions. The ∼ signs mean that individual constraints may be defined using ≤,
= or ≥ corresponding to the GAMS constructs =L= , =E= and =G=.

The components of x are called the nonlinear variables, and the components of y are the linear variables. Similarly,
the equations in (2) are called the nonlinear constraints, and the equations in (3) are the linear constraints.
Equations (2) and (3) together are called the general constraints.

Let m1 and n1 denote the number of nonlinear constraints and variables, and let m and n denote the total number
of (general) constraints and variables. Thus, A3 has m−m1 rows and n−n1 columns. The constraints (4) specify
upper and lower bounds on all variables. These are fundamental to many problem formulations and are treated
specially by the solution algorithms in GAMS/MINOS. Some of the components of ` and u may be −∞ or +∞
respectively, in accordance with the GAMS use of -INF and +INF.

The vectors b1 and b2 are called the right-hand side, and together are denoted by b.

3.1 Linear Programming

If the functions F (x) and f(x) are absent, the problem becomes a linear program. Since there is no need to
distinguish between linear and nonlinear variables, we use x rather than y. GAMS/MINOS converts all general
constraints into equalities, and the only remaining inequalities are simple bounds on the variables. Thus, we write
linear programs in the form

LP minimize
x

cT x

subject to Ax + Is = 0

` ≤
(

x
s

)
≤ u

where the elements of x are your own GAMS variables, and s is a set of slack variables: one for each general
constraint. For computational reasons, the right-hand side b is incorporated into the bounds on s.

In the expression Ax + Is = 0 we write the identity matrix explicitly if we are concerned with columns of the
associated matrix

(
A I

)
. Otherwise we will use the equivalent notation Ax + s = 0.

GAMS/MINOS solves linear programs using a reliable implementation of the primal simplex method [3], in which
the constraints Ax + Is = 0 are partitioned into the form

BxB + NxN = 0,

where the basis matrix is square and nonsingular. The elements of xB and xN are called the basic or nonbasic
variables respectively. Together they are a permutation of the vector(

x
s

)
.

Normally, each nonbasic variable is equal to one of its bounds, and the basic variables take on whatever values are
needed to satisfy the general constraints. (The basic variables may be computed by solving the linear equations
BxB = NxN .) It can be shown that if an optimal solution to a linear program exists, then it has this form.

The simplex method reaches such a solution by performing a sequence of iterations, in which one column of B is
replaced by one column of N (and vice versa), until no such interchange can be found that will reduce the value
of cT x.

As indicated nonbasic variables usually satisfy their upper and lower bounds. If any components of xB lie
significantly outside their bounds, we say that the current point is infeasible. In this case, the simplex method
uses a Phase 1 procedure to reduce the sum of infeasibilities to zero. This is similar to the subsequent Phase 2
procedure that optimizes the true objective function cT x.

If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between their bounds
`j < xj < uj . In addition, at a feasible or optimal solution, some of the basic variables may lie slightly outside

4 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

their bounds: `j − δ < xj < `j or uj < xj < uj + δ where δ is a feasibility tolerance (typically 10−6). In rare
cases, even nonbasic variables might lie outside their bounds by as much as δ.

GAMS/MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz ordering scheme
and Bartels-Golub updates, as implemented in the Fortran package LUSOL[7] (see [1, 2, 11, 12]). The basis
factorization is central to the efficient handling of sparse linear and nonlinear constraints.

3.2 Problems with a Nonlinear Objective

When nonlinearities are confined to the term F (x) in the objective function, the problem is a linearly constrained
nonlinear program. GAMS/MINOS solves such problems using a reduced-gradient algorithm[14] combined with a
quasi-Newton algorithm that is described in [8]. In the reduced-gradient method, the constraints Ax+ Is = 0 are
partitioned into the form

BxB + SxS + NxN = 0

where xs is a set of superbasic variables. At a solution, the basic and superbasic variables will lie somewhere
between their bounds (to within the feasibility tolerance δ, while nonbasic variables will normally be equal to
one of their bounds, as before. Let the number of superbasic variables be s, the number of columns in S. (The
context will always distinguish s from the vector of slack variables.) At a solution, s will be no more than n1, the
number of nonlinear variables. In many practical cases we have found that s remains reasonably small, say 200
or less, even if n1 is large.

In the reduced-gradient algorithm, xs is regarded as a set of independent variables or free variables that are
allowed to move in any desirable direction, namely one that will improve the value of the objective function (or
reduce the sum of infeasibilities). The basic variables can then be adjusted in order to continue satisfying the
linear constraints.

If it appears that no improvement can be made with the current definition of B, S and N , some of the nonbasic
variables are selected to be added to S, and the process is repeated with an increased value of s. At all stages, if
a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic and the value of s is
reduced by one.

A step of the reduced-gradient method is called a minor iteration. For linear problems, we may interpret the
simplex method as being the same as the reduced-gradient method, with the number of superbasic variable
oscillating between 0 and 1.

A certain matrix Z is needed now for descriptive purposes. It takes the form−B−1S
I
0

though it is never computed explicitly. Given an LU factorization of the basis matrix B, it is possible to compute
products of the form Zq and ZT g by solving linear equations involving B or BT . This in turn allows optimization
to be performed on the superbasic variables, while the basic variables are adjusted to satisfy the general linear
constraints.

An important feature of GAMS/MINOS is a stable implementation of a quasi-Newton algorithm for optimizing
the superbasic variables. This can achieve superlinear convergence during any sequence of iterations for which
the B, S, N partition remains constant. A search direction q for the superbasic variables is obtained by solving
a system of the form

RT Rq = −ZT g

where g is a gradient of F (x), ZT g is the reduced gradient, and R is a dense upper triangular matrix. GAMS

computes the gradient vector g analytically, using symbolic differentiation. The matrix R is updated in various
ways in order to approximate the reduced Hessian according to RT R ≈ ZT HZ where H is the matrix of second
derivatives of F (x) (the Hessian).

Once q is available, the search direction for all variables is defined by p = Zq. A line search is then performed to

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 5

find an approximate solution to the one-dimensional problem

minimize
α

F (x + αp)

subject to 0 < α < β

where β is determined by the bounds on the variables. Another important piece in GAMS/MINOS is a step-length
procedure used in the linesearch to determine the step-length α (see [6]). The number of nonlinear function
evaluations required may be influenced by setting the Linesearch tolerance, as discussed in Section 9.

As a linear programming solver, an equation BT π = gB is solved to obtain the dual variables or shadow prices π
where gB is the gradient of the objective function associated with basic variables. It follows that gB −BT π = 0.
The analogous quantity for superbasic variables is the reduced-gradient vector ZT g = gs−sT π; this should also be
zero at an optimal solution. (In practice its components will be of order r||π|| where r is the optimality tolerance,
typically 10−6, and ||π|| is a measure of the size of the elements of π.)

3.3 Problems with Nonlinear Constraints

If any of the constraints are nonlinear, GAMS/MINOS employs a project Lagrangian algorithm, based on a method
due to [13], see [9]. This involves a sequence of major iterations, each of which requires the solution of a linearly
constrained subproblem. Each subproblem contains linearized versions of the nonlinear constraints, as well as the
original linear constraints and bounds.

At the start of the kth major iteration, let xk be an estimate of the nonlinear variables, and let λk be an estimate
of the Lagrange multipliers (or dual variables) associated with the nonlinear constraints. The constraints are
linearized by changing f(x) in equation (2) to its linear approximation:

f ′(x, xk) = f(xk) + J(xk)(x− xk)

or more briefly
f ′ = fk + Jk(x− xk)

where J(xk) is the Jacobian matrix evaluated at xk. (The i-th row of the Jacobian is the gradient vector of the
i-th nonlinear constraint function. As for the objective gradient, GAMS calculates the Jacobian using symbolic
differentiation).

The subproblem to be solved during the k-th major iteration is then

minimize
x,y

F (x) + cT x + dT y − λT
k (f − f ′) + 0.5ρ(f − f ′)T (f − f ′) (5)

subject to f ′ + A1y ∼ b1 (6)
A2x + A3y ∼ b2 (7)

` ≤
(

x
y

)
≤ u (8)

The objective function (5) is called an augmented Lagrangian. The scalar ρ is a penalty parameter, and the term
involving ρ is a modified quadratic penalty function.

GAMS/MINOS uses the reduced-gradient algorithm to minimize (5) subject to (6) – (8). As before, slack variables
are introduced and b1 and b2 are incorporated into the bounds on the slacks. The linearized constraints take the
form (

Jk A1

A2 A3

) (
x
y

)
+

(
I 0
0 I

) (
s1

s2

)
=

(
Jkxk − fk

0

)
This system will be referred to as Ax+Is = 0 as in the linear case. The Jacobian Jk is treated as a sparse matrix,
the same as the matrices A1, A2, and A3.

In the output from GAMS/MINOS, the term Feasible subproblem indicates that the linearized constraints have
been satisfied. In general, the nonlinear constraints are satisfied only in the limit, so that feasibility and optimality
occur at essentially the same time. The nonlinear constraint violation is printed every major iteration. Even if
it is zero early on (say at the initial point), it may increase and perhaps fluctuate before tending to zero. On
well behaved problems, the constraint violation will decrease quadratically (i.e., very quickly) during the final few
major iteration.

6 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

4 Modeling Issues

Formulating nonlinear models requires that the modeler pays attention to some details that play no role when
dealing with linear models.

4.1 Starting Points

The first issue is specifying a starting point. It is advised to specify a good starting point for as many nonlinear
variables as possible. The GAMS default of zero is often a very poor choice, making this even more important.

As an (artificial) example consider the problem where we want to find the smallest circle that contains a number
of points (xi, yi):

Example minimize
r,a,b

r

subject to (xi − a)2 + (yi − b)2 ≤ r2, r ≥ 0.

This problem can be modeled in GAMS as follows.

set i ’points’ /p1*p10/;

parameters
x(i) ’x coordinates’,
y(i) ’y coordinates’;

* fill with random data
x(i) = uniform(1,10);
y(i) = uniform(1,10);

variables
a ’x coordinate of center of circle’
b ’y coordinate of center of circle’
r ’radius’;

equations
e(i) ’points must be inside circle’;

e(i).. sqr(x(i)-a) + sqr(y(i)-b) =l= sqr(r);

r.lo = 0;

model m /all/;
option nlp=minos;
solve m using nlp minimizing r;

Without help, MINOS will not be able to find an optimal solution. The problem will be declared infeasible. In
this case, providing a good starting point is very easy. If we define

xmin = min
i

xi,

ymin = min
i

yi,

xmax = max
i

xi,

ymax = max
i

yi,

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 7

then good estimates are

a = (xmin + xmax)/2,

b = (ymin + ymax)/2,

r =
√

(a− xmin)2 + (b− ymin)2.

Thus we include in our model:

parameters xmin,ymin,xmax,ymax;
xmin = smin(i, x(i));
ymin = smin(i, x(i));
xmax = smax(i, x(i));
ymax = smax(i, y(i));

* set starting point
a.l = (xmin+xmax)/2;
b.l = (ymin+ymax)/2;
r.l = sqrt(sqr(a.l-xmin) + sqr(b.l-ymin));

and now the model solves very easily.

Level values can also be set implicitly as a result of assigning bounds. When a variable is bounded away from
zero, for instance by the statement Y.LO = 1;, the SOLVE statement will override the default level of zero of such
a variable in order to make it feasible.

4.2 Bounds

Setting appropriate bounds can be very important to guide the algorithm from visiting uninteresting areas, and
to prevent function evaluation errors to happen.

If your model contains an expression of the form xy it is important to add a bound x > 0.001, as exponentation
is evaluated in GAMS as exp(y log(x)). In some cases one cannot write a bound directly, e.g. if the equation is
z = xf(y). In that case it is advised to introduce an extra variable and equation:

z = xϑ

ϑ = f(y)
ϑ ≥ ε

(Note that the function SQR(x) does not require x to be positive).

If the model produces function evaluation errors adding bounds is prefered to raising the DOMLIM limit.

Bounds in GAMS are specified using X.LO(i)=0.001 and X.UP(i) = 1000.

4.3 Scaling

Although MINOS has some facilities to scale the problem before starting to optimize it, it remains in important
task for the modeler to provide a well-scaled model. This is especially the case for nonlinear models. GAMS has
special syntax features to specify row and column scales that allows the modeler to keep the equations in a most
natural form. For more information consult the GAMS User’s Guide.

4.4 The Objective Function

The first step GAMS/MINOS performs is to try to reconstruct the objective function. In GAMS, optimization
models minimize or maximize an objective variable. MINOS however works with an objective function. One way
of dealing with this is to add a dummy linear function with just the objective variable. Consider the following
GAMS fragment:

8 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

obj.. z =e= sum(i, sqr(resid(i)));

model m /all/;
solve m using nlp minimizing z;

This can be cast in form NLP (equations (1)− (4)) by saying minimize z subject to z =
∑

i resid2
i and the other

constraints in the model. Although simple, this approach is not always preferable. Especially when all constraints
are linear it is important to minimize

∑
i resid2

i directly. This can be achieved by a simple reformulation: z can
be substituted out. The substitution mechanism carries out the formulation if all of the following conditions hold:

• the objective variable z is a free continuous variable (no bounds are defined on z),

• z appears linearly in the objective function,

• the objective function is formulated as an equality constraint,

• z is only present in the objective function and not in other constraints.

For many models it is very important that the nonlinear objective function be used by MINOS. For instance the
model chem.gms from the model library solves in 21 iterations. When we add the bound

energy.lo = 0;

on the objective variable energy and thus preventing it from being substituted out, MINOS will not be able to
find a feasible point for the given starting point.

This reformulation mechanism has been extended for substitutions along the diagonal. For example, the GAMS

model

variables x,y,z;
equations e1,e2;
e1..z =e= y;
e2..y =e= sqr(1+x);
model m /all/;
option nlp=minos;
solve m using nlp minimizing z;

will be reformulated as an unconstrained optimization problem

minimize f(x) = (1 + x)2.

These additional reformulations can be turned off by using the statement option reform = 0; (see §5).

5 GAMS Options

The following GAMS options are used by GAMS/MINOS:

5.1 Options Specified through the Option Statement

The following options are specified through the option statement. For example,

option iterlim = 100 ;

sets the iteration limit to 100.

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 9

LP
This option selects the LP solver. Example: option LP=MINOS;. See also §2.

NLP
This option selects the NLP solver. Example: option NLP=MINOS;. See also §2.

DNLP
Selects the DNLP solver for models with discontinuous or non-differentiable functions. Example: option
DNLP=MINOS;. See also §2.

RMIP
Selects the Relaxed Mixed-Integer (RMIP) solver. By relaxing the integer conditions of a MIP model,
effectively an LP model results. Example: option RMIP=MINOS;. See also §2.

RMINLP
Selects the Relaxed Non-linear Mixed-Integer (RMINLP) solver. By relaxing the integer conditions in an
MINLP, the model becomes effectively an NLP. Example: option RMINLP=MINOS;. See also §2.

iterlim
Sets the (minor) iteration limit. Example: option iterlim=50000;. The default is 10000. MINOS will
stop as soon as the number of minor iterations exceeds the iteration limit. In that case the current solution
will be reported.

reslim
Sets the time limit or resource limit. Depending on the architecture this is wall clock time or CPU time.
MINOS will stop as soon as more than reslim seconds have elapsed since MINOS started. The current
solution will be reported in this case. Example: option reslim = 600;. The default is 1000 seconds.

domlim
Sets the domain violation limit. Domain errors are evaluation errors in the nonlinear functions. An example
of a domain error is trying to evaluate

√
x for x < 0. Other examples include taking logs of negative numbers,

and evaluating xy for x < ε (xy is evaluated as exp(y log x)). When such a situation occurs the number of
domain errors is increased by one, and MINOS will stop if this number exceeds the limit. If the limit has
not been reached, a reasonable number is returned (e.g., in the case of

√
x, x < 0 a zero is passed back)

and MINOS is asked to continue. In many cases MINOS will be able to recover from these domain errors,
especially when they happen at some intermediate point. Nevertheless it is best to add appropriate bounds
or linear constraints to ensure that these domain errors don’t occur. For example, when an expression log(x)
is present in the model, add a statement like x.lo = 0.001;. Example: option domlim=100;. The default
value is 0.

bratio
Basis acceptance test. When several models are solved in a row, GAMS automatically passes dual information
to MINOS so that it can reconstruct an advanced basis. When too many new variables or constraints enter
the model, it may be better not to use existing basis information, but to crash a new basis instead. The
bratio determines how quickly an existing basis is discarded. A value of 1.0 will discard any basis, while a
value of 0.0 will retain any basis. Example: option bratio=1.0;. Default: bratio = 0.25.

sysout
Debug listing. When turned on, extra information printed by MINOS will be added to the listing file.
Example: option sysout=on;. Default: sysout = off.

work
The work option sets the amount of memory MINOS can use. By default an estimate is used based on the
model statistics (number of (nonlinear) equations, number of (nonlinear) variables, number of (nonlinear)
nonzeroes etc.). In most cases this is sufficient to solve the model. In some extreme cases MINOS may need
more memory, and the user can specify this with this option. For historical reasons work is specified in
“double words” or 8 byte quantities. For example, option work=100000; will ask for 0.76 MB (a megabyte
being defined as 1024× 1024 bytes).

10 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

reform
This option will instruct the reformulation mechanism described in §4.4 to substitute out equality equations.
The default value of 100 will cause the procedure to try further substitutions along the diagonal after the
objective variable has been removed. Any other value will prohibit this diagonal procedure. Example:
option reform = 0;. Default: reform = 100.

5.2 Options Specified through Model Suffixes

The following options are specified through the use of the model suffix. For example:

model m /all/;
m.workspace = 10;
solve m using nlp minimizing z;

sets the amount of memory used to 10 MB. “m” is the name of the model as specified by the model statement. In
order to be effective, the assignment of the model suffix should be made between the model and solve statements.

m.iterlim
Sets the iteration limit. Overrides the global iteration limit. Example: m.iterlim=50000; The default is
10000. See also §5.

m.reslim
Sets the resource or time limit. Overrides the global resource limit. Example: m.reslim=600; The default
is 1000 seconds. See also §5.

m.bratio
Sets the basis acceptance test parameter. Overrides the global setting. Example: m.bratio=1.0; The
default is 0.25. See also §5.

m.scaleopt
Whether or not to scale the model using user-supplied scale factors. The user can provide scale factors using
the .scale variable and equation suffix. For example, x.scale(i,j) = 100; will assign a scale factor of
100 to all xi,j variables. The variables MINOS will see are scaled by a factor 1/variable scale, so the modeler
should use scale factors that represent the order of magnitude of the variable. In that case MINOS will see
variables that are scaled around 1.0. Similarly equation scales can be assigned to equations, which are
scaled by a factor 1/equation scale. Example: m.scaleopt=1; will turn scaling on. The default is not to
use scaling, and the default scale factors are 1.0. Automatic scaling is provided by the MINOS option scale
option.

m.optfile
Sets whether or not to use a solver option file. Solver specific MINOS options are specified in a file called
minos.opt, see §9. To tell MINOS to use this file, add the statement: option m.optfile=1;. The default
is not to use an option file.

m.workspace
The workspace option sets the amount of memory that MINOS can use. By default an estimate is used
based on the model statistics (number of (nonlinear) equations, number of (nonlinear) variables, number
of (nonlinear) nonzeroes, etc.). In most cases this is sufficient to solve the model. In some extreme cases
MINOS may need more memory, and the user can specify this with this option. The amount of memory is
specified in MB. Example: m.workspace = 5;.

6 Summary of MINOS Options

The performance of GAMS/MINOS is controlled by a number of parameters or options. Each option has a default
value that should be appropriate for most problems. (The defaults are given in the Section 7.) For special

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 11

situations it is possible to specify non-standard values for some or all of the options through the MINOS option
file.

All these options should be entered in the option file ’minos.opt’ (for the older solver MINOS5 this name is
’minos5.opt’) after setting the m.OPTFILE parameter to 1. The option file is not case sensitive and the keywords
must be given in full. Examples for using the option file can be found at the end of this section. The second
column in the tables below contains the section where more detailed information can be obtained about the
corresponding option in the first column.

6.1 Output Related Options

Debug level Controls amounts of output information.
Log Frequency Frequency of iteration log information.
Print level Amount of output information.
Scale, print Causes printing of the row and column-scales.
Solution No/Yes Controls printing of final solution.
Summary frequency Controls information in summary file.

6.2 Options Affecting Tolerances

Crash tolerance crash tolerance
Feasibility tolerance Variable feasibility tolerance for linear constraints.
Line search tolerance Accuracy of step length location during line search.
LU factor tolerance Tolerances during LU factorization.
LU update tolerance
LU Singularity tolerance
Optimality tolerance Optimality tolerance.
Pivot Tolerance Prevents singularity.
Row Tolerance Accuracy of nonlinear constraint satisfaction at optimum.
Subspace tolerance Controls the extent to which optimization is confined

to the current set of basic and superbasic variables

6.3 Options Affecting Iteration Limits

Iterations limit Maximum number of minor iterations allowed
Major iterations Maximum number of major iterations allowed.
Minor iterations Maximum number of minor iterations allowed between

successive linearizations of the nonlinear constraints.

6.4 Other Algorithmic Options

Check frequency frequency of linear constraint satisfaction test.
Completion accuracy level of sub-problem solution.
Crash option Perform crash
Damping parameter See Major Damping Parameter
Expand frequency Part of anti-cycling procedure
Factorization frequency Maximum number of basis changes between factorizations.
Hessian dimension Dimension of reduced Hessian matrix
Lagrangian Determines linearized sub-problem objective function.
Major damping parameter Forces stability between subproblem solutions.
Minor damping parameter Limits the change in x during a line search.
Multiple price Pricing strategy
Partial Price Level of partial pricing.
Penalty Parameter Value of ρ in the modified augmented Lagrangian.
Radius of convergence Determines when ρ will be reduced.
Scale option Level of scaling done on the model.
Start assigned nonlinears Affects the starting strategy during cold start.
Superbasics limit Limits storage allocated for superbasic variables.
Unbounded objective value Detects unboundedness in nonlinear problems.
Unbounded step size Detects unboundedness in nonlinear problems.
Verify option Finite-difference check on the gradients
Weight on linear objective Invokes the composite objective technique

12 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

6.5 Examples of GAMS/MINOS Option File

The following example illustrates the use of certain options that might be helpful for difficult models involving
nonlinear constraints. Experimentation may be necessary with the values specified, particularly if the sequence
of major iterations does not converge using default values.

* These options might be relevant for very nonlinear models.
Major damping parameter 0.2 * may prevent divergence.
Minor damping parameter 0.2 * if there are singularities

* in the nonlinear functions.
Penalty parameter 10.0 * or 100.0 perhaps-a value

* higher than the default.
Scale linear variables * (This is the default.)

Conversely, nonlinearly constrained models that are very nearly linear may optimize more efficiently if some of
the cautious defaults are relaxed:

* Suggestions for models with MILDLY nonlinear constraints
Completion Full
Minor alteration limit 200
Penalty parameter 0.0 * or 0.1 perhaps-a value

* smaller than the default.
* Scale one of the following

Scale all variables * if starting point is VERY GOOD.
Scale linear variables * if they need it.
Scale No * otherwise.

Most of the options described in the next section should be left at their default values for any given model. If
experimentation is necessary, we recommend changing just one option at a time.

7 Special Notes

7.1 Modeling Hints

Unfortunately, there is no guarantee that the algorithm just described will converge from an arbitrary starting
point. The concerned modeler can influence the likelihood of convergence as follows:

• Specify initial activity levels for the nonlinear variables as carefully as possible (using the GAMS suffix .L).

• Include sensible upper and lower bounds on all variables.

• Specify a Major damping parameter that is lower than the default value, if the problem is suspected of being
highly nonlinear

• Specify a Penalty parameter ρ that is higher than the default value, again if the problem is highly nonlinear.

In rare cases it may be safe to request the values λk = 0 and ρ = 0 for all subproblems, by specifying La-
grangian=No. However, convergence is much more like with the default setting, Lagrangian=Yes. The initial
estimate of the Lagrange multipliers is then λ0 = 0, but for later subproblems λk is taken to be the Lagrange
multipliers associated with the (linearized) nonlinear constraints at the end of the previous major iteration.

For the first subproblem, the default value for the penalty parameter is ρ = 100.0/m1 where m1 is the number of
nonlinear constraints. For later subproblems, ρ is reduced in stages when it appears that the sequence {xk, λk}
is converging. In many times it is safe to specify λ = 0, particularly if the problem is only mildly nonlinear. This
may improve the overall efficiency.

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 13

7.2 Storage

GAMS/MINOS uses one large array of main storage for most of its workspace. The implementation places no fixed
limit on the size of a problem or on its shape (many constraints and relatively few variables, or vice versa). In
general, the limiting factor will be the amount of main storage available on a particular machine, and the amount
of computation time that one‘s budget and/or patience can stand.

Some detailed knowledge of a particular model will usually indicate whether the solution procedure is likely to
be efficient. An important quantity is m, the total number of general constraints in (2) and (3). The amount of
workspace required by GAMS/MINOS is roughly 100m words, where one word is the relevant storage unit for the
floating-point arithmetic being used. This usually means about 800m bytes for workspace. A further 300K bytes,
approximately, are needed for the program itself, along with buffer space for several files. Very roughly, then, a
model with m general constraints requires about (m + 300) K bytes of memory.

Another important quantity, is n, the total number of variables in x and y. The above comments assume that n
is not much larger than m, the number of constraints. A typical ratio for n/m is 2 or 3.

If there are many nonlinear variables (i.e., if n1 is large), much depends on whether the objective function or the
constraints are highly nonlinear or not. The degree of nonlinearity affects s, the number of superbasic variables.
Recall that s is zero for purely linear problems. We know that s need never be larger than n1 + 1. In practice, s
is often very much less than this upper limit.

In the quasi-Newton algorithm, the dense triangular matrix R has dimension s and requires about s2/2 words of
storage. If it seems likely that s will be very large, some aggregation or reformulation of the problem should be
considered.

8 The GAMS/MINOS Log File

MINOS writes different logs for LPs, NLPs with linear constraints, and NLPs with non-linear constraints. In this
section., a sample log file is shown for for each case, and the appearing messages are explained.

8.1 Linear Programs

MINOS uses a standard two-phase Simplex method for LPs. In the first phase, the sum of the infeasibilities
at each iteration is minimized. Once feasibility is attained, MINOS switches to phase 2 where it minimizes (or
maximizes) the original objective function. The different objective functions are called the phase 1 and phase
2 objectives. Notice that the marginals in phase 1 are with respect to the phase 1 objective. This means that
if MINOS interrupts in phase 1, the marginals are ”wrong” in the sense that they do not reflect the original
objective.

The log for the problem TURKPOW is as follows:

GAMS Rev 132 Copyright (C) 1987-2002 GAMS Development. All rights reserved
Licensee: Erwin Kalvelagen G020307:1807CP-WIN

GAMS Development Corporation DC1556
--- Starting compilation
--- TURKPOW.GMS(231) 1 Mb
--- Starting execution
--- TURKPOW.GMS(202) 2 Mb
--- Generating model turkey
--- TURKPOW.GMS(205) 2 Mb
--- 350 rows, 949 columns, and 5872 non-zeroes.
--- Executing MINOS

MINOS-Link May 25, 2002 WIN.M5.M5 20.6 023.046.040.VIS GAMS/MINOS 5.5

GAMS/MINOS, Large Scale Nonlinear Solver

14 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

B. A. Murtagh, University of New South Wales
P. E. Gill, University of California at San Diego,
W. Murray, M. A. Saunders, and M. H. Wright,
Systems Optimization Laboratory, Stanford University

Work space allocated -- 2.21 Mb

Reading Rows...
Reading Columns...

Itn ninf sinf objective
100 6 1.454E+00 -2.05756624E+04
200 0 0.000E+00 2.08164754E+04
300 0 0.000E+00 1.62252805E+04
400 0 0.000E+00 1.42039308E+04
500 0 0.000E+00 1.34920341E+04
600 0 0.000E+00 1.27183672E+04

EXIT - Optimal Solution found, objective: 12657.77

--- Restarting execution
--- TURKPOW.GMS(205) 0 Mb
--- Reading solution for model turkey
--- TURKPOW.GMS(230) 2 Mb
*** Status: Normal completion

The first line that is written by MINOS is the version string: MINOS-Link May 25, 2002 WIN.M5.M5 20.6
023.046.040.VIS GAMS/MINOS 5.5. This line identifies which version of the MINOS libraries and links you
are using, and is only to be deciphered by GAMS support personnel.

After some advertisement text we see the amount of work space that is allocated: 2.08 Mb. When MINOS is
loaded, the amount of memory needed is first estimated. This estimate is based on statistics like the number
of rows, columns and non-zeros. This amount of memory is then allocated and the problem is then loaded into
MINOS.

The columns have the following meaning:

Itn Iteration number.

ninf Number of infeasibilities. If nonzero the model is still infeasible.

sinf The sum of the infeasibilities. This number is minimized during Phase I. Once the model is feasible this
number is zero.

objective The value of the objective function: z =
∑

cixi. In phase II this number is maximized or minimized.
In phase I it may move in the wrong direction.

The final line indicates the exit status of MINOS.

8.2 Linearly Constrained NLP’s

The log is basically the same as for linear models. The only difference is that not only matrix row and columns
need to be loaded, but also instructions for evaluating functions and gradients.

The log for the problem WEAPONS is as follows:

GAMS Rev 132 Copyright (C) 1987-2002 GAMS Development. All rights reserved
Licensee: Erwin Kalvelagen G020307:1807CP-WIN

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 15

GAMS Development Corporation DC1556
--- Starting compilation
--- WEAPONS.GMS(78) 1 Mb
--- Starting execution
--- WEAPONS.GMS(66) 2 Mb
--- Generating model war
--- WEAPONS.GMS(68) 2 Mb
--- 13 rows, 66 columns, and 156 non-zeroes.
--- WEAPONS.GMS(68) 2 Mb
--- Executing MINOS

MINOS-Link May 25, 2002 WIN.M5.M5 20.6 023.046.040.VIS GAMS/MINOS 5.5

GAMS/MINOS, Large Scale Nonlinear Solver
B. A. Murtagh, University of New South Wales
P. E. Gill, University of California at San Diego,
W. Murray, M. A. Saunders, and M. H. Wright,
Systems Optimization Laboratory, Stanford University

Work space allocated -- 1.70 Mb

Reading Rows...
Reading Columns...
Reading Instructions...

Itn ninf sinf objective
100 0 0.000E+00 1.71416714E+03
200 0 0.000E+00 1.73477872E+03

EXIT - Optimal Solution found, objective: 1735.570

--- Restarting execution
--- WEAPONS.GMS(68) 0 Mb
--- Reading solution for model war
--- WEAPONS.GMS(77) 2 Mb
*** Status: Normal completion

8.3 NLP’s with Nonlinear Constraints

For models with nonlinear constraints the log is more complicated. CAMCGE from the model library is such
an example, and the screen output resulting from running it is shown below:

GAMS Rev 132 Copyright (C) 1987-2002 GAMS Development. All rights reserved
Licensee: Erwin Kalvelagen G020307:1807CP-WIN

GAMS Development Corporation DC1556
--- Starting compilation
--- CAMCGE.GMS(451) 1 Mb
--- Starting execution
--- CAMCGE.GMS(441) 2 Mb
--- Generating model camcge
--- CAMCGE.GMS(450) 2 Mb
--- 243 rows, 280 columns, and 1356 non-zeroes.
--- CAMCGE.GMS(450) 2 Mb
--- Executing MINOS

16 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

MINOS-Link May 25, 2002 WIN.M5.M5 20.6 023.046.040.VIS GAMS/MINOS 5.5

GAMS/MINOS, Large Scale Nonlinear Solver
B. A. Murtagh, University of New South Wales
P. E. Gill, University of California at San Diego,
W. Murray, M. A. Saunders, and M. H. Wright,
Systems Optimization Laboratory, Stanford University

Work space allocated -- 2.01 Mb

Reading Rows...
Reading Columns...
Reading Instructions...

Major minor step objective Feasible Optimal nsb ncon penalty BSswp
1 2T 0.0E+00 0.00000E+00 1.8E+02 2.0E-01 0 1 1.0E+00 0
2 90 1.0E+00 1.91735E+02 1.5E-03 7.6E+00 0 3 1.0E+00 0
3 0 1.0E+00 1.91735E+02 1.3E-09 5.5E-06 0 4 1.0E+00 0
4 0 1.0E+00 1.91735E+02 1.4E-12 2.9E-13 0 5 1.0E-01 0

EXIT - Optimal Solution found, objective: 191.7346

--- Restarting execution
--- CAMCGE.GMS(450) 0 Mb
--- Reading solution for model camcge
*** Status: Normal completion

Two sets of iterations - Major and Minor, are now reported. A description of the various columns present in this
log file follows:

Major A major iteration involves linearizing the nonlinear constraints and performing a number of minor itera-
tions on the resulting subproblem. The objective for the subproblem is an augmented Lagrangian, not the
true objective function.

minor The number of minor iterations performed on the linearized subproblem. If it is a simple number like
90, then the subproblem was solved to optimality. Here, 2T means that the subproblem was terminated.
In general the T is not something to worry about. Other possible flags are I and U , which mean that the
subproblem was Infeasible or Unbounded. MINOS may have difficulty if these keep occurring.

step The step size taken towards the solution suggested by the last major iteration. Ideally this should be 1.0,
especially near an optimum. If the subproblem solutions are widely different, MINOS may reduce the step
size under control of the Major Damping parameter.

objective The objective function for the original nonlinear program.

Feasible Primal infeasibility, indicating the maximum non-linear constraint violation.

Optimal The maximum dual infeasibility, measured as the maximum departure from complementarity. If we
call dj the reduced cost of variable xj , then the dual infeasibility of xj is dj × min{xj − `j , 1} or −dj ×
min{uj − xj , 1} depending on the sign of dj .

nsb Number of superbasics. If the model is feasible this number cannot exceed the superbasic limit, which may
need to be reset to a larger number if the numbers in this column become larger.

ncon The number of times MINOS has evaluated the nonlinear constraints and their derivatives.

penalty The current value of the penalty parameter in the augmented Lagrangian (the objective for the sub-
problems). If the major iterations appear to be converging, MINOS will decrease the penalty parameter. If
there appears to be difficulty, such as unbounded subproblems, the penalty parameter will be increased.

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 17

BSswp Number of basis swaps: the number of
(
B S

)
(i.e. basic vs. superbasic) changes.

Note: The CAMCGE model (like many CGE models or other almost square systems) can better be solved with
the MINOS option Start Assigned Nonlinears Basic.

9 Detailed Description of MINOS Options

The following is an alphabetical list of the keywords that may appear in the GAMS/MINOS options file, and a
description of their effect. The letters i and r denote integer and real values. The number δ denotes machine
precision (typically 10−15 or 10−16). Options not specified will take the default values shown.

Check frequency i

Every ith iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x satisfies the general linear constraints (including linearized nonlinear constraints, if any). The
constraints are of the form Ax + s = 0 where s is the set of slack variables. To perform the numerical test,
the residual vector r = Ax + s is computed. If the largest component of r is judged to be too large, the
current basis is refactorized and the basic variables are recomputed to satisfy the general constraints more
accurately.
(Default = 60)

Completion Full Completion Partial
When there are nonlinear constraints, this determines whether subproblems should be solved to moderate
accuracy (partial completion), or to full accuracy (full completion), GAMS/MINOS implements the option
by using two sets of convergence tolerances for the subproblems.
Use of partial completion may reduce the work during early major iterations, unless the Minor iterations
limit is active. The optimal set of basic and superbasic variables will probably be determined for any given
subproblem, but the reduced gradient may be larger than it would have been with full completion.
An automatic switch to full completion occurs when it appears that the sequence of major iterations is
converging. The switch is made when the nonlinear constraint error is reduced below 100× (Row tolerance),
the relative change in λk is 0.1 or less, and the previous subproblem was solved to optimality.
Full completion tends to give better Langrange-multiplier estimates. It may lead to fewer major iterations,
but may result in more minor iterations.
(Default = FULL)

Crash option i
If a restart is not being performed, an initial basis will be selected from certain columns of the constraint
matrix

(
A I

)
. The value of i determines which columns of A are eligible. Columns of I are used to fill

gaps where necessary.
If i > 0, three passes are made through the relevant columns of A, searching for a basis matrix that is
essentially triangular. A column is assigned to pivot on a particular row if the column contains a suitably
large element in a row that has not yet been assigned. (The pivot elements ultimately form the diagonals
of the triangular basis).
Pass 1 selects pivots from free columns (corresponding to variables with no upper and lower bounds). Pass
2 requires pivots to be in rows associated with equality (=E=) constraints. Pass 3 allows the pivots to be in
inequality rows.
For remaining (unassigned) rows, the associated slack variables are inserted to complete the basis.
(Default = 3)

crash option 0
The initial basis will contain only slack variables: B = I

crash option 1
All columns of A are considered (except those excluded by the Start assigned nonlinears option).

crash option 2
Only the columns of A corresponding to the linear variables y will be considered.

18 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

crash option 3
Variables that appear nonlinearly in the objective will be excluded from the initial basis.

crash option 4
Variables that appear nonlinearly in the constraints will be excluded from the initial basis.

Crash tolerance r
The Crash tolerance r allows the starting procedure CRASH to ignore certain small nonzeros in each
column of A. If amax is the largest element in column j, other nonzeros ai,j in the column are ignored if
|ai,j | < amax × r. To be meaningful, r should be in the range 0 ≤ r < 1).
When r > 0.0 the basis obtained by CRASH may not be strictly triangular, but it is likely to be nonsingular
and almost triangular. The intention is to obtain a starting basis containing more columns of A and fewer
(arbitrary) slacks. A feasible solution may be reached sooner on some problems.
For example, suppose the first m columns of A are the matrix shown under LU factor tolerance; i.e., a
tridiagonal matrix with entries -1, 4, -1. To help CRASH choose all m columns for the initial basis, we
could specify Crash tolerance r for some value of r > 0.25.
(Default = 0.1)

Damping parameter r
See Major Damping Parameter.
(Default = 2.0)

Debug level i
This causes various amounts of information to be output. Most debug levels will not be helpful to GAMS

users, but they are listed here for completeness. Note that you will need to use the GAMS statement OPTION
SYSOUT=on; to echo the MINOS listing to the GAMS listing file.
(Default = 0)

debug level 0
No debug output.

debug level 2 (or more)
Output from M5SETX showing the maximum residual after a row check.

debug level 40
Output from LU8RPC (which updates the LU factors of the basis matrix), showing the position of the
last nonzero in the transformed incoming column.

debug level 50
Output from LU1MAR (which updates the LU factors each refactorization), showing each pivot row
and column and the dimensions of the dense matrix involved in the associated elimination.

debug level 100
Output from M2BFAC and M5LOG listing the basic and superbasic variables and their values at every
iteration.

Expand frequency i
This option is part of anti-cycling procedure designed to guarantee progress even on highly degenerate
problems.
For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose the specified feasibility tolerance is δ. Over a period
of i iterations, the tolerance actually used by GAMS/MINOS increases from 0.5 δ to δ (in steps 0.58δ/i).
For nonlinear models, the same procedure is used for iterations in which there is only one superbasic variable.
(Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus, zero steps
are allowed if there is more than one superbasic variable, but otherwise positive steps are enforced.
Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most of which are
eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large pivot
element (see Pivot tolerance).
(Default = 10000).

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 19

Factorization frequency i
At most i basis changes will occur between factori-zations of the basis matrix.
With linear programs, the basis factors are usually updated every iteration. The default i is reasonable for
typical problems. Higher values up to i = 100 (say) may be more efficient on problems that are extremely
sparse and well scaled.
When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached. The
number of iterations between basis factorizations will therefore increase. During these iterations a test is
made regularly (according to the Check frequency) to ensure that the general constraints are satisfied. If
necessary the basis will be re-factorized before the limit of i updates is reached.
When the constraints are nonlinear, the Minor iterations limit will probably preempt i.
(Default = 100 (50 for NLP’s))

Feasibility tolerance r
When the constraints are linear, a feasible solution is one in which all variables, including slacks, satisfy
their upper and lower bounds to within the absolute tolerance r. (Since slacks are included, this means that
the general linear constraints are also satisfied within r.)
GAMS/MINOS attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the problem is declared infeasible. Let SINF be the corresponding
sum of infeasibilities. If SINF is quite small, it may be appropriate to raise r by a factor of 10 or 100.
Otherwise, some error in the data should be suspected.
If SINF is not small, there may be other points that have a significantly smaller sum of infeasibilities.
GAMS/MINOS does not attempt to find a solution that minimizes the sum.
If Scale option = 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more likely to
be meaningful).
A nonlinear objective function F (x) will be evaluated only at feasible points. If there are regions where
F (x) is undefined, every attempt should be made to eliminate these regions from the problem. For example,
for a function F (x) =

√
x1 + log(x2), it should be essential to place lower bounds on both variables. If

Feasibility tolerance = 10−6, the bounds x1 > 10−5 and x2 > 10−4 might be appropriate. (The log
singularity is more serious; in general, keep variables as far away from singularities as possible.)
If the constraints are nonlinear, the above comments apply to each major iteration. A feasible solution
satisfies the current linearization of the constraints to within the tolerance r. The associated subproblem is
said to be feasible.
As for the objective function, bounds should be used to keep x more than r away from singularities in the
constraint functions f(x).
At the start of major iteration k, the constraint functions f(xk) are evaluated at a certain point xk. This
point always satisfies the relevant bounds (l < xk < u), but may not satisfy the general linear constraints.
During the associated minor iterations, F (x) and f(x) will be evaluated only at points x that satisfy the
bound and the general linear constraints (as well as the linearized nonlinear constraints).
If a subproblem is infeasible, the bounds on the linearized constraints are relaxed temporarily, in several
stages.
Feasibility with respect to the nonlinear constraints themselves is measured against the Row tolerance (not
against r). The relevant test is made at the start of a major iteration.
(Default = 10−6)

Hessian dimension r
This specifies than an r × r triangular matrix R is to be available for use by the quasi-Newton algorithm
(to approximate the reduced Hessian matrix according to ZT HZ ≈ RT R. Suppose there are s superbasic
variables at a particular iteration. Whenever possible, r should be greater than s.
If r > s, the first s columns of R will be used to approximate the reduced Hessian in the normal manner.
If there are no further changes to the set of superbasic variables, the rate of convergence will ultimately be
superlinear.
If r < s, a matrix of the form,

R =
(

Rr 0
D

)
will be used to approximate the reduced Hessian, where Rr is an r × r upper triangular matrix and D is a
diagonal matrix of order s−r. The rate of convergence will no longer be superlinear (and may be arbitrarily
slow).

20 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

The storage required if of the order r2/2, which is substantial if r is as large as 200 (say). In general, r
should be slight over-estimate of the final number of superbasic variables, whenever storage permits. It
need not be larger than n1 + 1, where n1 is the number of nonlinear variables. For many problems it can
be much smaller than n1.
If Superbasics limit s is specified, the default value of r is the same number, s (and conversely). This is
a safeguard to ensure super-linear convergence wherever possible. If neither r nor s is specified, GAMS
chooses values for both, using certain characteristics of the problem.
(Default = Superbasics limit)

Iterations limit i
This is maximum number of minor iterations allowed (i.e., iterations of the simplex method or the reduced-
gradient method). This option, if set, overrides the GAMS ITERLIM specification. If i = 0, no minor
iterations are performed, but the starting point is tested for both feasibility and optimality. Iters or Itns
are alternative keywords.
(Default = 1000)

Lagrangian Yes Lagrangian No
This determines the form of the objective function used for the linearized subproblems. The default value
yes is highly recommended. The Penalty parameter value is then also relevant. If No is specified, the
nonlinear constraint functions will be evaluated only twice per major iteration. Hence this option may be
useful if the nonlinear constraints are very expensive to evaluate. However, in general there is a great risk
that convergence may not occur.
(Default = yes)

Linesearch tolerance r
For nonlinear problems, this controls the accuracy with which a step-length α is located in the one-
dimensional problem

minimize
α

F (x + αp)

subject to 0 < α ≤ β

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are nonlinear, the
function being minimized is the augmented Lagrangian in equation (5).)
r must be a real value in the range 0.0 < r < 1.0.
The default value r = 0.1 requests a moderately accurate search. It should be satisfactory in most cases.
If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate: try r = 0.01 or
r = 0.001. The number of iterations should decrease, and this will reduce total run time if there are many
linear or nonlinear constraints.
If the nonlinear function are expensive to evaluate, a less accurate search may be appropriate; try r = 0.5
or perhaps r = 0.9. (The number of iterations will probably increase but the total number of function
evaluations may decrease enough to compensate.)
(Default = 0.1)

Log Frequency i

In general, one line of the iteration log is printed every ith minor iteration. A heading labels the printed
items, which include the current iteration number, the number and sum of feasibilities (if any), the sub-
problem objective value (if feasible), and the number of evaluations of the nonlinear functions.
A value such as i = 10, 100 or larger is suggested for those interested only in the final solution.
Log frequency 0 may be used as shorthand for Log frequency 99999.
If Print level > 0, the default value of i is 1. If Print level = 0, the default value of i is 100. If Print level = 0
and the constraints are nonlinear, the minor iteration log is not printed (and the Log frequency is ignored).
Instead, one line is printed at the beginning of each major iteration.
(Default = 1 or 100)

LU factor tolerance r1 LU update tolerance r2 LU singularity tolerance r3

The first two tolerances affect the stability and sparsity of the basis factorization B = LU during re-
factorization and updates respectively. The values specified must satisfy ri ≥ 1.0. The matrix L is a

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 21

product of matrices of the form: (
I
µ I

)
where the multipliers µ will satisfy |µ| < ri.

1. The default values ri = 10.0 usually strike a good compromise between stability and sparsity.

2. For large and relatively dense problems, ri = 25.0 (say) may give a useful improvement in sparsity
without impairing stability to a serious degree.

3. For certain very regular structures (e.g., band matrices) it may be necessary to set and r1 and/or r2 to
values smaller than the default in order to achieve stability. For example, if the columns of A include
a sub-matrix of the form: 4 −1

−1 4 −1
−1 4

it would be judicious to set both r1 and r2 to values in the range 1.0 < ri < 4.0. The singularity
tolerance r3 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Uj,j | ≤ r3 or |Uj,j | < r3 maxi |Uj,j | , the jth column of
the basis is replaced by the corresponding slack variable. (This is most likely to occur after a restart,
or at the start of a major iteration.)

In some cases , the Jacobian matrix may converge to values that make the basis could become very ill-
conditioned and the optimization could progress very slowly (if at all). Setting r3 = 1.0−5, say, may help
cause a judicious change of basis.
(Default values: r1 = 100.0 (5 for NLP’s), r2 = 10.0 (5 for NLP’s), r3 = ε2/3 ≈ 10−11)

Major damping parameter r
The parameter may assist convergence on problems that have highly nonlinear constraints. It is intended
to prevent large relative changes between subproblem solutions (xk, λk) and (xk+1, λk+1). For example, the
default value 2.0 prevents the relative change in either xk or λk from exceeding 200 percent. It will not be
active on well behaved problems.
The parameter is used to interpolate between the solutions at the beginning and end of each major iteration.
Thus xk+1 and λk+1 are changed to xk + σ(xk+1 − xk) and λk + σ(λk+1 − λk) for some step-length σ < 1.
In the case of nonlinear equation (where the number of constraints is the same as the number of variables)
this gives a damped Newton method.
This is very crude control. If the sequence of major iterations does not appear to be converging, one should
first re-run the problem with a higher Penalty parameter (say 10 or 100 times the default ρ). (Skip this
re-run in the case of nonlinear equations: there are no degrees of freedom and the value of ρ is irrelevant.)
If the subproblem solutions continue to change violently, try reducing r to 0.2 or 0.1 (say).
For implementation reason, the shortened step to σ applies to the nonlinear variables x, but not to the
linear variables y or the slack variables s. This may reduce the efficiency of the control.
(Default = 2.0)

Major iterations i
This is maximum number of major iterations allowed. It is intended to guard against an excessive number
of linearizations of the nonlinear constraints, since in some cases the sequence of major iterations my not
converge. The progress of the major iterations can be best monitored using Print level 0 (the default).
(Default = 50)

Minor damping parameter r
This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once a
feasible solution or feasible subproblem has been found.
A linesearch of the form

minimize
α

F (x + αp)

is performed over the range 0 < α ≤ β, where β is the step to the nearest upper or lower bound on x.
Normally, the first step length tried is a1 = min(1, β).

22 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

In some cases, such as F (x) = aebx or F (x) = axb, even a moderate change in the components of r can lean
to floating-point overflow. The parameter r is therefore used to define a limit

β′ = r(1 + ||x||)/||p||

and the first evaluation of F (x) is at the potentially smaller steplength α1 = min(1, β, β′)
. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The Minor damping parameter provides an additional safeguard. The
default value r = 2.0 should not affect progress on well behaved problems, but setting r = 0.1 or 0.01 may
be helpful when rapidly varying function are present. A good starting point may be required. An important
application is to the class of nonlinear least squares problems.
In case where several local optima exist, specifying a small value for r may help locate an optima near the
starting point.
(Default = 2.0)

Minor iterations i
This is the maximum number of minor iterations allowed between successive linearizations of the nonlinear
constraints. A moderate value (e.g., 20 ≤ i ≤ 50) prevents excessive efforts being expended on early major
iterations, but allows later subproblems to be solved to completion.
The limit applies to both infeasible and feasible iterations. In some cases, a large number of iterations, (say
K) might be required to obtain a feasible subproblem. If good starting values are supplied for variables
appearing nonlinearly in the constraints, it may be sensible to specify > K, to allow the first major iteration
to terminate at a feasible (and perhaps optimal) subproblem solution. (If a good initial subproblem is
arbitrarily interrupted by a small ith subsequent linearization may be less favorable than the first.) In
general it is unsafe to specify value as small as i = 1 or 2 even when an optimal solution has been reached,
a few minor iterations may be needed for the corresponding subproblem to be recognized as optimal.
The Iteration limit provides an independent limit on the total minor iterations (across all subproblems).
If the constraints are linear, only the Iteration limit applies: the minor iterations value is ignored.
(Default = 40)

Multiple price i
pricing refers to a scan of the current non-basic variables to determine if any should be changed from their
value (by allowing them to become superbasic or basic).
If multiple pricing in effect, the i best non-basic variables are selected for admission of appropriate sign If
partial pricing is also in effect , the best i best variables are selected from the current partition of A and I.
The default i = 1 is best for linear programs, since an optimal solution will have zero superbasic variables.
Warning : If i > 1, GAMS/MINOS will use the reduced-gradient method (rather than the simplex method)
even on purely linear problems. The subsequent iterations do not correspond to the efficient minor iterations
carried out be commercial linear programming system using multiple pricing. (In the latter systems, the
classical simplex method is applied to a tableau involving i dense columns of dimension m, and i is therefore
limited for storage reasons typically to the range 2 ≤ i ≤ 7.)
GAMS/MINOS varies all superbasic variables simultaneously. For linear problems its storage requirements
are essentially independent of i . Larger values of i are therefore practical, but in general the iterations and
time required when i > 1 are greater than when the simplex method is used (i = 1) .
On large nonlinear problems it may be important to set i > 1 if the starting point does not contain many
superbasic variables. For example, if a problem has 3000 variables and 500 of them are nonlinear, the
optimal solution may well have 200 variables superbasic. If the problem is solved in several runs, it may be
beneficial to use i = 10 (say) for early runs, until it seems that the number of superbasics has leveled off.
If Multiple price i is specified , it is also necessary to specify Superbasic limit s for some s > i.
(Default = 1)

Optimality tolerance r
This is used to judge the size of the reduced gradients dj = gj − πT aj , where gj is the gradient of the
objective function corresponding to the jth variable. aj is the associated column of the constraint matrix
(or Jacobian), and π is the set of dual variables.
By construction, the reduced gradients for basic variables are always zero. Optimality will be declared if the
reduced gradients for nonbasic variables at their lower or upper bounds satisfy dj/||π|| ≥ −r or dj/||π|| ≤ r

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 23

respectively, and if dj/||π|| ≤ r for superbasic variables.
In the ||π|| is a measure of the size of the dual variables. It is included to make the tests independents of a
scale factor on the objective function.
The quantity actually used is defined by

σ =
m∑

i=1

|πi|, ||π|| = max{σ/
√

m, 1}

so that only large scale factors are allowed for.
If the objective is scaled down to be small, the optimality test effectively reduced to comparing Dj against
r.
(Default = 10−6)

Partial Price i
This parameter is recommended for large problems that have significantly more variables than constraints.
It reduces the work required for each pricing operation (when a nonbasic variable is selected to become
basic or superbasic).
When i = 1, all columns of the constraints matrix (A I) are searched.
Otherwise, Aj and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to i). If the previous
search was successful on Aj−1, Ij−1, the next search begins on the segments Aj , Ij . (All subscripts here are
modulo i.)
If a reduced gradient is found that is large than some dynamic tolerance, the variable with the largest such
reduced gradient (of appropriate sign) is selected to become superbasic. (Several may be selected if multiple
pricing has been specified.) If nothing is found, the search continues on the next segments Aj+1, Ij+1 and
so on.
Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time periods.
(Default = 10 for LPs, or 1 for NLPs)

Penalty Parameter r
This specifies the value of ρ in the modified augmented Lagrangian. It is used only when Lagrangian = yes
(the default setting).
For early runs on a problem is known to be unknown characteristics, the default value should be acceptable.
If the problem is problem is known to be highly nonlinear, specify a large value, such as 10 times the default.
In general, a positive value of ρ may be necessary of known to ensure convergence, even for convex programs.
On the other hand, if ρ is too large, the rate of convergence may be unnecessarily slow. If the functions are
not highly nonlinear or a good starting point is known, it will often be safe to specify penalty parameter 0.0.
Initially, use a moderate value for r (such as the default) and a reasonably low Iterations and/or major
iterations limit. If successive major iterations appear to be terminating with radically different solutions,
the penalty parameter should be increased. (See also the Major damping parameter.) If there appears to
be little progress between major iteration, it may help to reduce the penalty parameter.
(Default = 100.0/m1)

Pivot Tolerance r
Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the
basis to become almost singular. The default value of r should be satisfactory in most circumstances.
When x changes to x + αp for some search direction p, a ratio test is used to determine which component
of x reaches an upper or lower bound first. The corresponding element of p is called the pivot element.
For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.
For nonlinear problems, elements smaller than r||p|| are ignored.
It is common (on degenerate problems) for two or more variables to reach a bound at essentially the same
time. In such cases, the Feasibility tolerance (say t) provides some freedom to maximize the pivot element
and thereby improve numerical stability. Excessively small values of t should not be specified.
To a lesser extent, the Expand frequency (say f) also provides some freedom to maximize pivot the element.
Excessively large values of f should therefore not be specified .
(Default = ε2/3 ≈ 10−11)

Print level i
This varies the amount of information that will be output during optimization.

24 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

Print level 0 sets the default Log and summary frequencies to 100. It is then easy to monitor the progress
of run.
Print level 1 (or more) sets the default Log and summary frequencies to 1, giving a line of output for every
minor iteration. Print level 1 also produces basis statistics., i.e., information relating to LU factors of the
basis matrix whenever the basis is re-factorized.
For problems with nonlinear constraints, certain quantities are printed at the start of each major iteration.
The value of is best thought of as a binary number of the form
Print level JFLXB
where each letter stand for a digit that is either 0 or 1. The quantities referred to are:

B Basis statistics, as mentioned above

X xk, the nonlinear variables involved in the objective function or the constraints.

L λk, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if Lagrangian=No, since
then λk = 0.)

F f(xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0. For example, Print level 10
sets X = 1 and the other digits equal to zero; the nonlinear variables will be printed each major iteration.
If J = 1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j
will be preceded by the value of the corresponding variable xj and a key to indicate whether the variable
is basic, superbasic or nonbasic. (Hence if J = 1, there is no reason to specify X = 1 unless the objective
contains more nonlinear variables than the Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0
and 2.0 in rows 1 and 4. (Note: the GAMS/MINOS row numbers are usually different from the GAMS row
numbers; see the Solution option.)
(Default = 0)

Radius of convergence r
This determines when the penalty parameter ρ will be reduced (if initialized to a positive value). Both
the nonlinear constraint violation (see ROWERR below) and the relative change in consecutive Lagrange
multiplier estimate must be less than r at the start of a major iteration before ρ is reduced or set to zero.
A few major iterations later, full completion will be requested if not already set, and the remaining sequence
of major iterations should converge quadratically to an optimum.
(Default = 0.01)

Row Tolerance r
This specifies how accurately the nonlinear constraints should be satisfied at a solution. The default value
is usually small enough, since model data is often specified to about that an accuracy.
Let ROWERR be the maximum component of the residual vector f(x) + A1y − b1, normalized by the size
of the solution. Thus

ROWERR =
||f(x) + A1y − b1||∞

1 + XNORM
where XNORM is a measure of the size of the current solution (x, y). The solution is regarded acceptably
feasible if ROWERR ≤ r.
If the problem functions involve data that is known to be of low accuracy, a larger Row tolerance may be
appropriate.
(Default = 10−6)

Scale option i
Scaling done on the model.
(Default = 2 for LPs, 1 for NLPs)

Scale option 0 Scale no
No scaling. If storage is at a premium, this option should be used

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 25

Scale option 1 Scale linear variables
Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1.0 (see [5]). This will sometimes improve the performance of the
solution procedures. Scale linear variables is an equivalent option.

Scale option 2 Scale nonlinear variables Scale all variables
All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (AI) that are fixed or have positive lower bounds or negative upper bounds. Scale
nonlinear variables or Scale all variables are equivalent options.

Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing,
because there are no linear variables to scale). Scale No suppresses scaling (equivalent to Scale Option 0).
If nonlinear constraints are present, Scale option 1 or 0 should generally be rid at first. Scale option 2 gives
scales that depend on the initial Jacobian, and should therefore be used only if (a) good starting point is
provided, and (b) the problem is not highly nonlinear.

Scale, print
This causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix coefficients are
a′ij = aijc(j)/r(i), and the scaled bounds on the variables, and slacks are l′j = lj/c(j), u′j = uj/c(j), where
c(j) = r(j − n) if j > n.
If a Scale option has not already been specified, Scale, print sets the default scaling.

Scale tolerance
All forms except Scale option may specify a tolerance r where 0 < r < 1 (for example: Scale, Print,
Tolerance = 0.99). This affects how many passes might be needed through the constraint matrix. On
each pass, the scaling procedure computes the ration of the largest and smallest nonzero coefficients in each
column:

ρj =
maxi |aij |
mini |aij |

(aij 6= 0)

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust the row and
column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A.
At most 10 passes are made.
If a Scale option has not already been specified, Scale tolerance sets the default scaling.
(Default = 0.9)

Solution yes Solution no
This controls whether or not GAMS/MINOS prints the final solution obtained. There is one line of output for
each constraint and variable. The lines are in the same order as in the GAMS solution, but the constraints
and variables labeled with internal GAMS/MINOS numbers rather than GAMS names. (The numbers at the
left of each line are GAMS/MINOS column numbers, and those at the right of each line in the rows section
are GAMS/MINOS slacks.)
The GAMS/MINOS solution may be useful occasionally to interpret certain messages that occur during the
optimization, and to determine the final status of certain variables (basic, superbasic or nonbasic).
(Default = No)

Start assigned nonlinears
This option affects the starting strategy when there is no basis (i.e., for the first solve or when the GAMS

statement option bratio = 1 is used to reject an existing basis.)
This option applies to all nonlinear variables that have been assigned non-default initial values and are
strictly between their bounds. Free variables at their default value of zero are excluded. Let K denote the
number of such assigned nonlinear variables.
Note that the first and fourth keywords are significant.
(Default = superbasic)

Start assigned nonlinears superbasic
Specify superbasic for highly nonlinear models, as long as K is not too large (say K < 100) and the
initial values are good.

26 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

Start assigned nonlinears basic
Specify basic for models that are essentially square (i.e., if there are about as many general constraints
as variables).

Start assigned nonlinears nonbasic
Specify nonbasic if K is large.

Start assigned nonlinears eligible for crash
Specify eligible for Crash for linear or nearly linear models. The nonlinear variables will be treated in
the manner described under Crash option.

Subspace tolerance r
This controls the extent to which optimization is confined to the current set of basic and superbasic variables
(Phase 4 iterations), before one or more nonbasic variables are added to the superbasic set (Phase 3).
r must be a real number in the range 0 < r ≤ 1.
When a nonbasic variables xj is made superbasic, the resulting norm of the reduced-gradient vector (for
all superbasics) is recorded. Let this be ||ZT g0||. (In fact, the norm will be |dj | , the size of the reduced
gradient for the new superbasic variable xj .
Subsequent Phase 4 iterations will continue at least until the norm of the reduced-gradient vector satisfies
||ZT g0|| ≤ r||ZT g0|| is the size of the largest reduced-gradient component among the superbasic variables.)
A smaller value of r is likely to increase the total number of iterations, but may reduce the number of basic
changes. A larger value such as r = 0.9 may sometimes lead to improved overall efficiency, if the number of
superbasic variables has to increase substantially between the starting point and an optimal solution.
Other convergence tests on the change in the function being minimized and the change in the variables may
prolong Phase 4 iterations. This helps to make the overall performance insensitive to larger values of r.
(Default = 0.5)

Summary frequency i

A brief form of the iteration log is output to the summary file. In general, one line is output every ith minor
iteration. In an interactive environment, the output normally appears at the terminal and allows a run to
be monitored. If something looks wrong, the run can be manually terminated.
The Summary frequency controls summary output in the same as the log frequency controls output to the
print file
A value such as i = 10 or 100 is often adequate to determine if the SOLVE is making progress. If Print level =
0, the default value of i is 100. If Print level > 0, the default value of i is 1. If Print level = 0 and the
constraints are nonlinear, the Summary frequency is ignored. Instead, one line is printed at the beginning
of each major iteration.
(Default = 1 or 100)

Superbasics limit i
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger
than the number of degrees of freedom expected at an optimal solution.
For linear problems, an optimum is normally a basic solution with no degrees of freedom. (The number of
variables lying strictly between their bounds is not more than m, the number of general constraints.) The
default value of i is therefore 1.
For nonlinear problems, the number of degrees of freedom is often called the number of independent variables.
Normally, i need not be greater than n1 + 1, where n1 is the number of nonlinear variables.
For many problems, i may be considerably smaller than n1. This will save storage if n1 is very large.
This parameter also sets the Hessian dimension, unless the latter is specified explicitly (and conversely). If
neither parameter is specified, GAMS chooses values for both, using certain characteristics of the problem.
(Default = Hessian dimension)

Unbounded objective value r
These parameters are intended to detect unboundedness in nonlinear problems. During a line search of the
form

minimize
α

F (x + αp)

If |F | exceeds r or if α exceeds r2, iterations are terminated with the exit message PROBLEM IS UNBOUNDED
(OR BADLY SCALED).

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 27

If singularities are present, unboundedness in F (x) may be manifested by a floating-point overflow (during
the evaluation of F (x + αp), before the test against r1 can be made.
Unboundedness is x is best avoided by placing finite upper and lower bounds on the variables. See also the
Minor damping parameter.
(Default = 1020)

Unbounded step size r
These parameters are intended to detect unboundedness in nonlinear problems. During a line search of the
form

minimize
α

F (x + αp)

If α exceeds r, iterations are terminated with the exit message PROBLEM IS UNBOUNDED (OR BADLY SCALED).
If singularities are present, unboundedness in F (x) may be manifested by a floating-point overflow (during
the evaluation of F (x + αp), before the test against r can be made.
Unboundedness is x is best avoided by placing finite upper and lower bounds on the variables. See also the
Minor damping parameter.
(Default = 1010)

Verify option i
This option refers to a finite-difference check on the gradients (first derivatives) computed by GAMS for
each nonlinear function. GAMS computes gradients analytically, and the values obtained should normally
be taken as correct.
Gradient verification occurs before the problem is scaled, and before the first basis is factorized. (Hence, it
occurs before the basic variables are set to satisfy the general constraints Ax + s = 0.)
(Default = 0)

Verify option 0
Only a cheap test is performed, requiring three evaluations of the nonlinear objective (if any) and two
evaluations of the nonlinear constraints. Verify No is an equivalent option.

Verify option 1
A more reliable check is made on each component of the objective gradient. Verify objective gradients
is an equivalent option.

Verify option 2
A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.
Verify constraint gradients is an equivalent option.

Verify option 3
A detailed check is made on both the objective and the Jacobian. Verify, Verify gradients, and Verify
Yes are equivalent options.

Verify option -1
No checking is performed.

Weight on linear objective r
The keywords invokes the so-called composite objective technique, if the first solution obtained infeasible,
and if the objective function contains linear terms.
While trying to reduce the sum of infeasibilities, the method also attempts to optimize the linear objective.

At each infeasible iteration, the objective function is defined to be

minimize
x

σw(cT x) + (sum of infeasibilities)

where σ = 1 for minimization and σ = −1 for maximization and c is the linear objective.
If an optimal solution is reached while still infeasible, w is reduced by a factor of 10. This helps to allow
for the possibility that the initial w is too large. It also provides dynamic allowance for the fact the sum of
infeasibilities is tending towards zero.
The effect of w is disabled after five such reductions, or if a feasible solution is obtained.
This option is intended mainly for linear programs. It is unlikely to be helpful if the objective function is
nonlinear.
(Default = 0.0)

28 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

10 Exit Conditions

This section discusses the Exit codes printed by MINOS at the end of the optimization run.

EXIT – Optimal solution found
This is the message we all hope to see! It is certainly preferable to every other message. Of course it is
quite possible that there are model formulation errors, which will (hopefully) lead to unexpected objective
values and solutions. The reported optimum may be a local, and other much better optima may exist.

EXIT – The problem is infeasible
When the constraints are linear, this message can probably be trusted. Feasibility is measured with respect
to the upper and lower bounds on the variables (the bounds on the slack variables correspond to the GAMS

constraints). The message tells us that among all the points satisfying the general constraints Ax + s = 0,
there is apparently no point that satisfies the bounds on x and s. Violations as small as the FEASIBILITY
TOLERANCE are ignored, but at least one component of x or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of the infeasibilities, this sum will usually not have
been minimized when MINOS recognizes the situation and exits. There may exist other points that have
significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a feasible
solution exists, the current linearization of the constraints may not contain a feasible point. In an attempt
to deal with this situation MINOS may relax the bounds on the slacks associated with nonlinear rows. This
perturbation is allowed a fixed number of times. Normally a feasible point will be obtained to the perturbed
constraints, and optimization can continue on the subproblem. However if several consecutive subproblems
require such perturbation, the problem is terminated and declared INFEASIBLE. Clearly this is an ad-hoc
procedure. Wherever possible, nonlinear constraints should be defined in such a way that feasible points
are known to exist when the constraints are linearized.

EXIT – The problem is unbounded (or badly scaled)
For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can ap-
parently be increased by an arbitrary amount without causing a basic variable to violate a bound. A simple
way to diagnose such a model is to add an appropriate bound on the objective variable.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication
of unboundedness. Consider using the SCALE option.

For nonlinear problems, MINOS monitors both the size of the current objective function and the size of the
change in the variables at each step. If either of these is very large (as judged by the UNBOUNDED parameter),
the problem is terminated and declared UNBOUNDED. To avoid large function values, it may be necessary
to impose bounds on some of the variables in order to keep them away from singularities in the nonlinear
functions.

EXIT – User Interrupt
This exit code is a result of interrupting the optimization process by hitting Ctrl-C. Inside the IDE this is
accomplished by hitting the Interrupt button. The solver will finish its current iteration, and return the
current solution. This solution can be still intermediate infeasible or intermediate non-optimal.

EXIT – Too many iterations
The iteration limit was hit. Either the ITERLIM, or in some cases the ITERATIONS LIMIT or MAJOR
ITERATION LIMIT was too small to solve the problem. In most cases increasing the GAMS ITERLIM op-
tion will resolve the problem. In other cases you will need to create a MINOS option file and set a MAJOR
ITERATION LIMIT. The listing file will give more information what limit was hit.

The GAMS iteration limit is displayed in the listing file under the section SOLVE SUMMARY. If the GAMS

ITERLIM was hit, the message will look like:

ITERATION COUNT, LIMIT 10001 10000

EXIT – Resource Interrupt
The solver hit the RESLIM resource limit, which is a time limit. It returned the solution at that time, which
may be still intermediate infeasible or intermediate non-optimal.

MINOS: A Solver for Large-Scale Nonlinear Optimization Problems 29

The GAMS resource limit is displayed in the listing file under the section SOLVE SUMMARY. If the GAMS

RESLIM was hit, the message will look like:

RESOURCE USAGE, LIMIT 1001.570 1000.000

EXIT – The objective has not changed for many iterations
This is an emergency measure for the rare occasions when the solution procedure appears to be cycling.
Suppose that a zero step is taken for several consecutive iterations, with a basis change occurring each
time. It is theoretically possible for the set of basic variables to become the same as they were one or more
iterations earlier. The same sequence of iterations would then occur ad infinitum.

EXIT – The Superbasics Limit is too small
The problem appears to be more non-linear than anticipated. The current set of basic and superbasic
variables have been optimized as much as possible and it is needed to increase the number of superbasics.
You can use the option SUPERBASICS LIMIT to increase the limit. See also option HESSIAN DIMENSION.

EXIT – Constraint and objective function could not be calculated
The function or gradient could not be evaluated. This means the algorithm tried to take a log of a negative
number, a square root of a negative number or there was an expression xy with x ≤ 0 or something related
like a floating point overflow. The listing file will contain an indication in which equation this happened.
The solution is to add bounds so that all functions can be properly evaluated. E.g. if you have an expression
xy, then add a bound X.LO=0.001;.

In many cases the algorithm can recover from function evaluation errors, for instance if they happen in
the line search. In this case the algorithm can not recover, and requires a reliable function or gradient
evaluation.

EXIT – Function evaluation error limit
The limit of allowed function evaluation errors DOMLIM has been exceeded.

This means the algorithm tried too many time to take a log of a negative number, a square root of a negative
number or there was an expression xy with x ≤ 0 or something related like a floating point overflow. The
listing file will contain an indication in which equation this happened.

The simple way to solve this is to increase the GAMS DOMLIM setting, but in general it is better to add
bounds. E.g. if you have an expression xy, then add a bound X.LO=0.001;.

EXIT – The current point can not be improved
The line search failed. This can happen if the model is very nonlinear or if the functions are nonsmooth
(using a DNLP model type).

If the model is non-smooth, consider a smooth approximation. It may be useful to check the scaling of the
model and think more carefully about choosing a good starting point. Sometimes it can help to restart the
model with full scaling turned on:

option nlp=minos;
solve m minimizing z using nlp; // this one gives "current point cannot be improved"
file fopt /minos.opt/; // write option file
put fopt;
put "scale all variables"/;
putclose;
m.optfile=1;
solve m minimizing z using nlp; // solve with "scale all variables"

EXIT – Numerical error in trying to satisfy the linear constraints (or the linearized constraints). The basis is very ill-conditioned.

This is often a scaling problem. Try full scaling, or better: use user-defined scaling using the GAMS

scaling syntax.

EXIT – Not enough storage to solve the model
The estimate of the workspace needed to solve the model has turned out to be insufficient. You may want
to increase the workspace by using the GAMS WORK option, or the M.WORKSPACE model suffix.

30 MINOS: A Solver for Large-Scale Nonlinear Optimization Problems

The listing file and log file (screen) will contain a message of the currently allocated workspace. This gives
an indication of how much you should allocate, e.g. 1.5 times as much.

EXIT – Systems error
This is a catch all return for other serious problems. Check the listing file for more messages. If needed
rerun the model with OPTION SYSOUT=ON;.

MINOS References

[1] R. H. Bartels, A stabilization of the simplex method, Numerische Mathematik, 16 (1971), pp. 414–434.

[2] R. H. Bartels and G. H. Golub, The simplex method of linear programming using the LU decomposition,
Communications of the ACM, 12 (1969), pp. 266–268.

[3] G. .B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey,
1963.

[4] W. C. Davidon, Variable metric methods for minimization, A.E.C. Res. and Develop. Report ANL-5990,
Argonne National Laboratory, Argonne, IL., 1959.

[5] R. Fourer, Solving staircase linear programs by the simplex method, Mathematical Programming, 23 (1982),
pp. 274–313.

[6] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Two step-length algorithms for numer-
ical optimization, Report SOL 79-25, Department of Operations Research, Stanford University, Stanford,
California, 1979.

[7] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Maintaining factors of a general sparse
matrix, Linear Algebra and its Applications, 88/89 (1987), pp. 239–270.

[8] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained optimization, Mathematical Pro-
gramming, 14 (1978), pp. 41–72.

[9] B. A. Murtagh and M. A. Saunders, A projected Lagrangian algorithm and its implementation for sparse
nonlinear constraints, Mathematic Programming Study, 16 (1982), Algorithms for Constrained Minimization
of Smooth Nonlinear Function, pp. 84–117.

[10] B. A. Murtagh and M. A. Saunders, MINOS 5.0 User‘s Guide, Report SOL 83-20, Department of
Operations Research, Stanford University, 1983 (Revised as MINOS 5.1 User‘s Guide, Report SOL 83-20R,
1987.)

[11] J. K. Reid, Fortran subroutines for handling sparse linear programming bases, Report R8269, Atomic Energy
Research Establishment, Harwell, England, 1976.

[12] J. K. Reid, A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases,
Mathematical Programming, 24 (1982), pp. 55–69.

[13] S. M. Robinson, A quadratically convergent algorithm for general nonlinear programming problems, Math-
ematical Programming 3 (1972), pp. 145–156.

[14] P. Wolfe, The reduced-gradient method, unpublished manuscript, RAND Corporation, 1962.

	MINOS: A Solver for Large-Scale Nonlinear Optimization Problems
	Introduction
	How to Run a Model with GAMS/MINOS
	Overview of GAMS/MINOS
	Linear Programming
	Problems with a Nonlinear Objective
	Problems with Nonlinear Constraints

	Modeling Issues
	Starting Points
	Bounds
	Scaling
	The Objective Function

	GAMS Options
	Options Specified through the Option Statement
	Options Specified through Model Suffixes

	Summary of MINOS Options
	Output Related Options
	Options Affecting Tolerances
	Options Affecting Iteration Limits
	Other Algorithmic Options
	Examples of GAMS/MINOS Option File

	Special Notes
	Modeling Hints
	Storage

	The GAMS/MINOS Log File
	Linear Programs
	Linearly Constrained NLP's
	NLP's with Nonlinear Constraints

	Detailed Description of MINOS Options
	Exit Conditions

