На правах рукописи

Безбабный Дмитрий Александрович

Исследование формирования, структуры и свойств пленок полупроводниковых силицидов кальция на Si (111)

Специальность – 01.04.10 Физика полупроводников

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Владивосток 2014 Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Дальневосточный федеральный университет» и Федеральном государственном бюджетном учреждении науки Институте автоматики и процессов управления ДВО РАН

Научный руководитель:	Галкин Николай Геннадьевич доктор физико-математических наук, профессор	
Официальные оппоненты:	Иванов Валерий Иванович доктор физико-математических наук, профессор, Дальневосточный государственный университет путей сообщения	
	Синебрюхов Сергей Леонидович кандидат химических наук, старший научный со- трудник, Институт химии Дальневосточного отде- ления РАН	
Ведущая организация:	Федеральное государственное бюджетное учреж- дение науки Институт материаловедения Хаба- ровского научного центра Дальневосточного от- деления Российской академии наук, г. Хабаровск	

Защита состоится 6 марта 2014 года в 14⁰⁰ часов на заседании диссертационного совета Д 005.007.02 при Федеральном государственном бюджетном учреждении науки Институте автоматики и процессов управления Дальневосточного отделения РАН по адресу: 690041, г. Владивосток, ул. Радио, 5, ауд. 510.

С диссертацией можно ознакомиться в библиотеке ИАПУ ДВО РАН

Автореферат разослан ____ февраля 2014 г.

Ученый секретарь диссертационного совета, кандидат технических наук, доцент

Rang-

Гамаюнов Е.Л.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

<u>Актуальность темы.</u> Полупроводниковые силициды металлов с пониженной размерностью привлекают широкое внимание исследователей, как с точки зрения фундаментальных знаний, так и с практической точки зрения. Фундаментальный интерес к ним вызван проявлением в них новых свойств (оптических, электрических, термоэлектрических), что связано с квантово-механическим ограничением электронов, фононов и других квазичастиц в таких пленках и изменениями в электронной плотности состояний, электропроводности, теплопроводности. Практический аспект использования систем с пониженной размерностью состоит в создании датчиков различных физических величин, включая фотоэлектрические и термоэлектрические преобразователи.

Данная диссертационная работа посвящена исследованию формирования, параметров электронной структуры, оптических и электрических свойств тонких (двумерных) и толстых пленок полупроводникового силицида кальция с повышенной концентрацией кремния (Ca₃Si₄), который в отличие от полупроводникового силицида кальция (Ca₂Si) практически не исследован. Известные лишь теоретические работы, которые предсказывают существование такого полупроводникового силицида (Ca₃Si₄) в системе кальций – кремний. Это вызвано узкой областью гомогенности системы и сложностью его получения при твердофазной эпитаксии. В предварительных экспериментах нами было обнаружено, что полупроводниковый силицид кальция с составом близким к Ca₃Si₄ формируется при реактивной эпитаксии из источника кальция на атомарно-чистом кремнии, но диапазон скоростей кальция, необходимый для его получения, в настоящее время не исследован. Соответственно, не выращены тонкие и толстые слои этого силицида и не исследованы его свойства. Предварительное формирование слоя аморфного кремния или Mg₂Si может изменить кинетику формирования силицидов кальция (Ca₃Si₄ или Ca₂Si) и последовательность образуемых фаз. Этот подход в настоящее время также не исследован. Проблема роста кремния поверх данных силицидов также ранее не рассматривалась. Решение этой проблемы позволит подойти к созданию гетероструктур Si/Ca₃Si₄/Si(111) и Si/Ca₂Si/Si (111),

которые могут обладать интересными фотоэлектрическими и термоэлектрическими свойствами. Следовательно, **целями данной диссертационной работы** являются формирование полупроводниковых силицидов кальция (Ca₂Si и Ca₃Si₄) на Si(111) в виде пленок различной толщины на кремниевых подложках, гетероструктур Si/Ca_xSi/Si на их основе и определение оптических и электрических параметров пленок и гетероструктур.

Обоснование выбора материалов. Выбор Са и Mg для исследования создания тонкопленочных полупроводниковых соединений с кремнием обоснован как фундаментальным интересом к этим материалам, так и возможными перспективами их использования в кремниевой электронике. Кроме того, Са и Mg являются доступными, недорогими и экологически чистыми материалами.

Основные научные задачи:

1. Определить влияние температуры подложки, скорости осаждения кальция и отжига пленки на формирование Ca₃Si₄, а также исследовать условия формирования наноразмерных островков Ca₃Si₄ на монокристаллическом кремнии методом реактивной эпитаксии.

2. Определить условия роста толстых пленок Ca_2Si на Si(111) и на предварительно созданном слое Mg_2Si на Si(111).

3. Исследовать оптические, электрические и термоэлектрические, а также фотолюминесцентные свойства тонких и толстых пленок Ca₃Si₄ и Ca₂Si.

4. Исследовать рост двойных гетероструктур (ДГС) Si/Ca₃Si₄/Si(111) и Si/Ca₂Si/Si (111) с толстым и тонким слоем силицида, определить их оптические и термоэлектрические свойства в различных диапазонах температур.

Научная новизна

1. Выращены толстые слои полупроводниковых силицидов кальция Ca_2Si и Ca_3Si_4 на Si(111) методом реактивной эпитаксии при температурах 130 °C и 500 °C, соответственно.

2. Толстые пленки Ca_3Si_4 имеют поликристаллическую структуру, являются непрямозонным вырожденным полупроводником с $E_g = 0.63$ эВ, характеризуются наличием плазменного отражения в дальней ИК-области, обладают высокой проводимостью, малым коэффициентом термо-эдс (50-80 мкВ/град), двумя интенсивными пиками 388 и 416 см⁻¹ и слабым пиком 344 см⁻¹ в спектрах комбинационного рассеяния света (КРС), сохраняют состав при температуре отжига 500 °С. 3. В толстых пленках Ca₃Si₄ обнаружены прямые межзонные переходы при 0.89 и 0.912 эВ с высокой силой осциллятора, что привело к регистрации в двойных гетероструктурах Si/Ca₃Si₄/Si (111) фотолюминесценции при T = 5 K.

4. Толстые пленки Ca₂Si, имеют нанокристаллическую структуру, являются непрямозонным полупроводником с шириной запрещенной зоны: E_g =0.68-0.70 эВ и не сохраняют свой состав при длительном отжиге при 130 °C.

5. Определены условия роста и выращены двойные гетероструктуры $Si/Ca_3Si_4/Si(111)$ и $Si/Ca_2Si/Si(111)$ с различными толщинами встроенных слоев Ca_3Si_4 и Ca_2Si .

Практическая ценность. Методики роста сплошных пленок силицидов кальция Ca₃Si₄ Ca₂Si и ДГС на их основе могут быть использованы в целях разработки и создания фото- и термоэлектрических приборов на кремнии. Результаты исследований структуры и оптических свойств свидетельствуют в пользу накопления фундаментальных знаний о системе Ca-Si и развития тонкопленочных кремниевых технологий.

Защищаемые положения

1. Пленки Ca₃Si₄, сформированные методом реактивной эпитаксии на поверхности Si(111)7x7 при 500 °C, имеют поликристаллическую структуру и являются непрямозонным вырожденным дырочным полупроводником с шириной запрещенной зоны 0.63 эВ, межзонными переходами 0.89 и 0.912 эВ с большой силой осциллятора и малым коэффициентом термо-эдс 50-80 мкВ/град.

2. Пленки Ca₂Si, сформированные методом реактивной эпитаксии на поверхности Si(111)7x7 при 130 °C, имеют нанокристаллическую структуру и являются непрямозонным полупроводником с шириной запрещенной зоны: E_g =0.68-0.70 эB.

3. Двойные гетероструктуры (ДГС) Si/Ca₃Si₄/Si(111), сформированные при 500 °C на поверхности Si(111) 7×7, характеризуются встраиванием в кремний нанокристаллитов или сплошного слоя Ca₃Si₄ в зависимости от толщины осаж-

денного слоя кальция в ДГС, выходом части НК Ca₃Si₄ на поверхность и сохранением дырочного вырождения во встроенном Ca₃Si₄.

4. Формирование двойных гетероструктур Si/Ca₂Si/Si(111) методом реактивной эпитаксии Ca при 130 °C на подложках Si(111) или Mg₂Si/Si(111) с последующим осаждением слоя кремния (48 нм) при 100 °C сопровождается встраиванием тонкого слоя Ca₂Si (14-16 нм) на глубину не менее 20 нм, а при использовании слоя Mg₂Si - растворением магния в решетке кремния на глубину до 1.5 мкм с формированием донорных уровней магния с энергией активации 240 мэВ.

Апробация результатов работы. Основные результаты работы были представлены на следующих конференциях: «Asian School-Conference on Physics and Technology of Nanostructured Materials» (ASCO-Nanomat) в 2011 и 2013 году (г. Владивосток, Россия); «APAC-SILICIDE 2013» (Цукуба, Япония, 2013); International Conference "Nanomeeting-2013" (Минск, Беларусь, 2013), «E-MRS 2012 FALL MEETING» (г. Варшава, Польша, 2012); XIII региональная конференция «Молодежь XXI века: шаг в будущее» (г. Благовещенск, Россия, 2012); 10, 11 и 12 региональная научной конференции «Физика: фундаментальные и прикладные исследования, образование» (г. Владивосток, Благовещенск, Хабаровск, Россия 2011-2013); XX и XXI научная конференция «Дни науки АмГУ» (г. Благовещенск, Россия, 2011-2012 гг.).

Публикации. По теме диссертации опубликованы 5 статей в журналах из списка ВАК и 5 статей в сборниках трудов региональных и международных конференций.

<u>Личный вклад автора.</u> Автор принимал участие во всех экспериментах, выполненных в ИАПУ ДВО РАН, обработке данных, обсуждении и написании статей и тезисов докладов.

<u>Структура и объем диссертации.</u> Диссертационная работа состоит из введения, четырех глав, заключения и списка цитируемой литературы. Общий объем диссертации составляет 126 страниц, включая 55 рисунков, 5 таблиц и список литературы из 77 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении сформулирована цель работы и ее актуальность, определены основные задачи, указаны новизна и практическая ценность работы, изложены основные защищаемые положения и описана структура диссертации.

В первой главе приводится обзор методов формирования тонких пленок полупроводниковых силицидов щелочноземельных металлов, в частности, таких как силициды магния и кальция, а также методы формирования и свойства гетероструктур со встроенными полупроводниковыми силицидами хрома, железа и магния на кремниевых подложках.

Силицид кальция Ca₂Si известен как полупроводник с шириной запрещенной зоны 0.3-0.35 эВ по данным теоретических вычислений [1], а согласно теоретическим расчетам авторов статьи [2] составляет 0.56 эВ. Однако по последним результатам расчетов (GW-аппроксимация) для орторомбического и кубического Ca₂Si [3] показано, что ширина запрещенной зоны составляет (1.02 эВ) и (1.16 эВ) соответственно. В экспериментальных же результатах величина ширины запрещенной зоны Ca₂Si составила 1.02 эВ [4]. *In situ* температурные холловские измерения [5] показали, что тонкая пленка Ca₂Si, выращенная на Si (111) при температуре подложки 120-130 °C характеризуется шириной запрещенной зоны с энергией 1.02 эВ. Этот результат согласуется с теоретическими расчетами структуры Ca₂Si [3]. Состав Ca₅Si₃ был определен Айзенман и Шэюфер [8]. Кристалл имеет тетрагональную структуру с шириной запрещенной зоны 0.56 эВ. Такой силицид показывает проводимость р-типа [2]. Результаты расчетов методом псевдопотенциала показали, что Ca₃Si₄ является непрямозонным полупроводником с шириной запрещенной зоны 0.375 эВ [1].

Экспериментальное исследование оптических и электрических свойств и особенностей формирования таких полупроводниковых силицидов кальция как Ca₂Si и Ca₃Si₄ – актуально, поскольку является предпосылкой для создания на их основе оптоэлектронных устройств и развития кремниевых технологий.

Во второй главе представлено краткое описание методов, использованных в данной работе, а именно – электронная Ожэ-спектроскопия (ЭОС), спектроскопия характеристических потерь энергии электронами (СХПЭЭ), оптическая спектроскопия твердых тел и дифференциальная отражательная спектроскопия (ДОС), фотолюминесцентная спектроскопия, спектроскопия комбинационного рассеяния света (КРС), метод атомной силовой микроскопии (АСМ), метод просвечивающей электронной микроскопии (ПЭМ). Приведены схемы экспериментальных установок, методы очистки образцов, схемы ростовых экспериментов и методики расчета оптических функций тонких пленок.

В третьей главе представлена общая схема ростовых экспериментов по формированию силицидов Ca₂Si и Ca₃Si₄. По данным ЭОС и ХПЭЭ показано, что формирование нанокристаллической пленки силицида кальция с составом Ca₂Si, наблюдается при температуре 130 °C в процессе как осаждения на предварительно сформированный слой аморфного кремния, так и на тонкую пленку Mg₂Si. При осаждении Ca на слой Mg₂Si происходит выход части атомов магния на поверхность образца и формирование сплошного слоя Ca₂Si. Показано, что Ca₂Si, сформированный обоими способами, по данным оптической спектроскопии является непрямозонным полупроводником с шириной запрещенной зоны 0.68 – 0.70 эВ, состоит из наноразмерных зерен, характеризуется КРС-пиком 352 см⁻¹ с малой интенсивностью, что подтверждает малый объем наноразмерных зерен в структуре пленки.

Формирование пленок различной толщины с предположительным составом - Ca_3Si_4 проводили методом реактивной эпитаксии при 500 °C на поверхности Si(111) 7x7 с различными скоростями. Исследовано формирование Ca_3Si_4 на Si(111) при различных толщинах осажденного кальция (3, 30 и 76 нм (Рис. 1)). Методами ХПЭЭ и ЭОС показано, что формируются островковая (3 нм) или сплошная (30 нм) пленка Ca_3Si_4 , а случае толщины слоя Ca – пленка силицида, обогащенная кальцием по сравнению с Ca_3Si_4 . Установлено, что при скорости осаждения кальция меньше 0.65 нм/мин до толщины Ca 172 нм на кремнии фор-

мируется силицид кальция с составом Ca₃Si₄, а при скоростях осаждения 1-2 нм/мин в слоях осажденного кальция больше 76 нм наблюдается формирование обогащенного кальцием силицида, что подтверждено данными КРС и оптической спектроскопии.

Рис. 1. Спектры Ожэ (а) и ХПЭЭ (б) для подложки Si(111) 7×7 с атомарно-чистой поверхностью и пленок с толщиной Са 3, 30 и 76 нм (образцы №10, №9 и №8 соответственно)

Результаты исследования температурной стабильности полупроводникового силицида Ca_3Si_4 рассмотрим на примере образца №2 ($d_{Ca} = 172$ нм). Скорость осаждения Са в процессе формирования пленки составляла $v_{Ca}=0.64$ нм/мин. На зарегистрированном после осаждения Са на Si подложку при T=500 °C спектре ДОС (Рис. 2 (а)) наблюдается широкий пик, в котором при разложении выделены пики: 2.0 и 2.2 эВ.

представлен ДОС-спектр полупроводникового силицида Ca₂Si, сформированного на образце №6 и имеющего единственный пик при энергии 2.1 эВ.

Отжиг пленки при T=500 °C в течение 30 минут привел лишь к малому уменьшению ДОС сигнала (Рис. 2 (а)). Таким образом, можно утверждать о высокой температурной стабильности пленки Ca₃Si₄ на Si подложке при температуре формирования. Отжиг пленки силицида Ca₂Si при T=130 °C в течение 30 минут привел к заметному уменьшению ДОС сигнала, но форма спектра ДОС не изменилась (Рис. 2 (б)). Учитывая экспоненциальный рост скорости десорбции Ca при увеличении температуры, можно предположить, что при T=500 °C этот силицид разрушится и сформируется высокотемпературный силицид с меньшим содержанием Ca.

Исследования кристаллической структуры методом ПЭМ показали, что пленка силицида Са имеет некоторую непрозрачную текстуру в толстой части пленки (Рис. 3). Полученное от тонкой части пленки изображение

Рис. 3. Изображение ПЭМ для образца №2. На вставленном рисунке представлена картина ПМД от тонкой части пленки.

просвечивающей микродифракции (ПМД) представлено на вставке на рисунке 3. Картина ПМД содержит рефлексы от подложки Si(111) и дифракционные кольца ОТ зерен поликристаллической силицида Са. пленки Невозможно предпочтительные выделить ориентации в этих зернах. Расчет картины ПМД позволил установить размеры этих колец в планарной геометрии (0.154, 0.131, 0.253, 0.313 нм в соответствии с интенсивностью), после чего мы сопоставили эти размеры с известными на сегодяшний день 5 силицидами кальция

(Ca₂Si, CaSi, Ca₅Si₃, Ca₁₄Si₁₉, CaSi₂), включая изоморфные фазы в стандартной базе данных [5]. Точные соответствия не были найдены по размерам колец. Также не смогли подобрать, по крайней мере, приблизительных совпадений соответствующих распределению интенсивности расстояний ни с одним из известных силицидов Ca. Таким образом, учитывая наличие в фазовой диаграмме состояния Ca – Si только шести силицидов, мы можем утверждать, что выращенная пленка силицида, состоит из поликристаллических зерен со структурой Ca₃Si₄.

Полупроводниковые свойства выращенных пленок Ca₂Si и Ca₃Si₄ протестированы методом оптической спектроскпии температурных И исследований сопротивления в широком диапазоне температур. Определено, что оба типа пленок имеют непрямую запрещенную зону с шириной 0.63 эВ для Ca₃Si₄ и 0.68-0.70 эВ для Ca₂Si. Показано, что высокая прозрачность пленок Ca₂Si наблюдается во всем диапазоне энергий от 1.0 до 0.1 эВ, а для пленок Ca₃Si₄ поглощение области наблюдается интенсивное В энергий ниже края поглощения (0.6-0.1)эВ), фундаментального что связано плазменным С отражением при высокой концентрации свободных носителей в Ca₃Si₄. Высокая проводимость пленок Ca₃Si₄ и малые значения коэффициентов термо-эдс (50-80 мкВ/град) были подтверждены температурными измерениями сопротивления образцов и их термо-эдс.

Рис. 4. (а) - Спектр отражения (R) и пропускания (T) для образца №7 (Ca₃Si₄; $\Sigma d=350$ нм); (б) – температурные зависимости коэффициента термо-эдс для образцов №3 (Ca₃Si₄; $d_{Ca}=76$ нм) №6 (Ca₂Si) и №7 (Ca₃Si₄; $\Sigma d=350$ нм)

В четвертой главе исследован рост кремния поверх наноразмерных островков и двумерной фазы силицидов кальция Ca₂Si и Ca₃Si₄, а также их оптиче-

Рис. 5. Спектры КРС для образцов №11-№13, покрытых аморфным слоем Si (d_{si}=100 нм) методом МЛЭ (500 °C)

ские свойства. Установлено по данным АСМ, что в зависимости от толщины осажденного слоя кальция в ДГС формируются нанокристаллиты или сплошной слой Ca_3Si_4 , а рост кремния сопровождается выходом части НК Ca_3Si_4 на поверхность. Это приводит к появлению интенсивных пиков КРС (Рис. 5) от пленки Ca_3Si_4 (344, 389 и 416 см⁻¹), которые по положению хорошо совпадают с пиками для незакрытых пленок Ca_3Si_4 , рассмотренных в главе 3. Результаты спектроскопии КРС для образцов №11-13, выращенных ме-

тодом МЛЭ кремния с различными толщинами осажденного Са (76, 30 и 3 нм соответственно) представлены на рисунке 5. Особенностью этих результатов является наличие двух КРС-пиков с максимальной интенсивностью (389 и 416 см⁻¹) и с малой интенсивностью (344 см⁻¹). Результаты исследования КРС микроскопии

Рис. 6. Спектры пропускания (а) и отражения (б) для образцов №14—№16, покрытых аморфным слоем Si (d_{Si} =100 нм) методом ТФЭ (500 °C)

для этих значений КРС-сдвигов показали, что оба интенсивных пика соответствуют только одной формируемой фазе (Ca₃Si₄) в выращенных гетероструктурах.

На спектрах отражения для образцов №14-16, выращенных методом ТФЭ с толщинами Са 76, 30 и 3 нм, соответственно, наблюдалась богатая структура пиков (0.87, 1.5 и 2.5 эВ) (Рис. 6(б)). Основной особенностью образца №14 является резкое увеличение поглощения в спектре пропускания с одновременным увеличением отражения в области малых энергий фотонов (0.05-0.25 эВ). Такое поведение характерно для эффекта плазменного резонанса на свободных носителях, известного для сильнолегированных полупроводников [7]. Т. к. нелегированный кремний использовался как сублимационный источник для роста покрывающего слоя кремния, этот слой не имел большой концентрации свободных носителей. Таким образом, свободные носители могут появляться только во встроенных слоях Са₃Si₄. Подобная ситуация наблюдалась ранее для других толстых пленок Са₃Si₄ и для образца №11.

Рис. 7. Спектры фотолюминесценции для образца с ДГС Si/Ca₃Si₄/Si(111) при температуре 5 К.

В ДГС Si/Ca₃Si₄/Si(111) при 5 К обнаружена слабая фотолюминесценция в диапазоне энергий фотонов 0.9 - 1.0 эВ (Рис. 7), которая связана с обнаружением в пленках Ca₃Si₄ прямых межзонных переходов при 0.89 эВ и 0.912 эВ с большой силой осциллятора. Обнаружены малые величины коэффициента термо-эдс для ДГС Si/Ca₃Si₄/Si(111), которые свидетельствует о сохранении высокой проводимости пленки Ca₃Si₄ внутри двойной гетероструктуры.

Рис. 8. Поперечное сечение в ВР ПЭМ образца Si/Ca₂Si/Si(111) с помощью энергетических фильтров (слева – в фильтре на кальций; справа – в фильтре на магний).

Исследован рост двойной гетероструктуры при осаждении слоя кремния при 100 °C толщиной 48 нм поверх тонкого сплошного по данным ХПЭЭ слоя Ca₂Si. Установлено методом ПЭМ (Рис. 8.) на поперечных срезах с использованием энергетических фильтров, что рост кремния приводит к встраиванию почти сплошного слоя силицида кальция (Ca₂Si) на глубину до 20 нм, что соответствует формированию двойной гетероструктуры со встроенным слоем Ca₂Si. При этом атомы Mg растворяются как в покрывающем слое, так и в подложке, а кальций весь сосредоточен в слое силицида кальция. Электрические измерения на меза-диодах с барьером Шоттки Au/Si/Ca₂Si/Si(111)-p/In показали, что n-тип проводимости покрывающего слоя кремния определяется донорными уровнями в кремнии, образованными атомами магния, с концентрацией $(3 - 7) \times 10^{14}$ см⁻² и энергией активации проводимости 240 мэВ.

ОСНОВНЫЕ ВЫВОДЫ

1. Выращены пленки силицидов кальция: Ca_2Si и Ca_3Si_4 различной толщины (4 – 240 нм) на подложке Si (111) 7×7 методом реактивной эпитаксии. Формирование нанокристаллической пленки силицида кальция с составом Ca_2Si наблюдается при температуре 130 °C в процессе как осаждения на предварительно сформированный слой аморфного кремния, так и на тонкую пленку Mg₂Si. Осаждение кальция методом реактивной эпитаксии на Si (111) 7×7 подложку при 500 °C приводит к формированию поликристаллического полупроводникового силицида кальция с кристаллической структурой, отличной от пяти известных силицидных фаз (Ca₂Si, CaSi, Ca₅Si₃, Ca₁₄Si₁₉, CaSi₂) и позволяющей ее отнести к гексагональной решетке Ca₃Si₄.

2. Методами оптической спектроскопии установлено, что пленки Ca₂Si и Ca₃Si₄ обладают непрямым фундаментальным переходом: $E_g=0.68$ эВ и $E_g=0.63$ эВ, соответственно. Анализ данных модуляционной оптической спектроскопии при комнатной температуре показал существование прямых межзонных переходов при 0.89 эВ и 0.912 эВ с большой силой осциллятора в толстых пленках Ca₃Si₄ и отсутствие подобных прямых межзонных переходов в пленках Ca₂Si.

3. По данным спектроскопии комбинационного рассеяния света (КРС) определено, что пленки Ca_3Si_4 характеризуются тремя активными КРС-пиками 346, 388 и 416 см⁻¹ с малой полушириной, что доказывает хорошее кристаллическое состояние системы. По данным микроскопии КРС доказано, что два интенсивных КРС-пика 389 см⁻¹ и 416 см⁻¹ и слабый КРС-пик 344 см⁻¹ относятся только к одной силицидной фазе. В пленках Ca_2Si замечен только слабый пик при 352 см⁻¹, что подтверждает слабую кристаллизацию выращенных пленок.

4. По данным *in situ* дифференциальной отражательной спектроскопии исследована температурная стабильность силицидов кальция при температуре формирования путем дополнительного отжига. Установлено, что пленка Ca₃Si₄ сохраняет свой состав во время отжига при 500 °C в течение 30 минут, а для пленок Ca₂Si при 30-минутном отжиге при 130 °C наблюдается частичное разложение силицидной фазы.

5. В пленках Ca₃Si₄ обнаружено формирование плазменного минимума в спектрах отражения при энергиях 0.8 – 0.1 эВ, что доказывает наличие в них высокой плотности свободных носителей, которые по данным метода горячего зонда являются электронами. Это подтверждено слабой зависимостью сопротивления пленок Ca₃Si₄ от температуры в диапазоне 20-530 K, а также малой величиной коэффициента термо-эдс (50-80 мкВ/град) для пленок Ca₃Si₄.

6. Двойные гетероструктуры (ДГС) Si/силицид Ca/Si были выращены методами реактивной эпитаксии Са при 500 °С на поверхности Si(111) 7×7, а также методом молекулярно-лучевой эпитаксии и твердофазной эпитаксии кремния при 500 °С. Установлено, что в зависимости от толщины осажденного слоя кальция в ДГС формируются нанокристаллиты или сплошной слой Ca₃Si₄, а рост кремния сопровождается части ΗК Ca₃Si₄ на ДГС выходом поверхность. В Si/Ca₃Si₄/Si(111) при 5 К обнаружена слабая фотолюминесценция в диапазоне энергий фотонов 0.9 – 1.0 эВ.

7. Рост слоя кремния при 100 °C толщиной 48 нм поверх тонкого слоя Ca2Si приводит к встраиванию слоя силицида в монокристаллический кремний на глубину до 20 нм по данным поперечных срезов ПЭМ с высоким разрешением, что соответствует формированию двойной гетероструктуры α -Si/Ca₂Si/Si(111) со встроенным слоем Ca₂Si.

8. Поперечный электрический транспорт в двойных гетероструктурах со встроенным слоем Ca₂Si, выращенном на прекурсоре Mg₂Si, обусловлен растворением атомов магния в кремнии на глубину до 1.5 мкм и появлением донорных уровней магния с энергией активации 240 мэВ и плотностью до $7.3 \cdot 10^{14}$ см⁻².

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

[1] Migas, D.B. Comparative study of structural, electronic and optical properties of Ca₂Si, Ca₂Ge, Ca₂Sn, and Ca₂Pb / D. B. Migas, L. Miglio, V. L. Shaposhnikov, V. E. Borisenko // Phys. Rev. – 2003. – № B 67. – P. 205203.

[2] Yinye, Y. A single phase semiconducting Ca-silicide film growth by sputtering conditions, annealing temperature and annealing time / Y. Yinye, X. Quan // J. Mater. Sci. – 2009.– № 44. – P. 3877.

[3] Lebegue, S. Calculated quasiparticle and optical properties of orthorhombic and cubic Ca₂Si / S. Lebegue, B. Arnaud, A. Alouani // Phys. Rev. – 2005. – № B 72. – P. 085103.

[4] Dotsenko, S. A. Growth, optical and electrical properties of Ca₂Si film grown on Si(111) and Mg₂Si/Si(111) substrates / S. A. Dotsenko, D. V. Fomin, K. N. Galkin, D. L. Goroshko, N. G. Galkin // Physics Procedia. – 2011. – Nº 11. – P. 95.

[5] <u>www.icdd.com</u> [Электронный ресурс]. – 08.2013

[6] Доценко С. А. Исследование начальных стадий роста Mg на Si(111) методами оптической и электронной спектроскопии при комнатной температуре / С. А. Доценко, К. Н. Галкин, Н. Г. Галкин, М. Kumar, Govind, S. M. Shivaprasad // Труды конференции «XI Конференция студентов, аспирантов и молодых ученых по физике полупроводниковых, диэлектрических и магнитных материалов. – 2007. – С. 58.

[7] Pancove, J. I. Optical Processes in Semiconductors / J. I. Pancove. – N. Y.: Dover. – 1971. – 386 p.

[8] Eisenmann, B (in German) / B. Eisenmann, H. Schafer, Z. Naturforsh. – 1974. –
№ B.29. – P. 460.

Основные результаты диссертации опубликованы в работах:

Статьи в журналах из списка ВАК:

 Dozsa, L. Formation and characterization of semiconductor Ca₂Si layers prepared on p-type silicon covered by an amorphous silicon cap / L. Dozsa, G. Molnar, Z. Zolnai, L. Dobos, B. Pecz, N. G. Galkin, S. A. Dotsenko, D. A. Bezbabny & D. V. Fomin // Journal of Materials Science. – 2013. – ISSN 0022-2461.

2. Dotsenko, S.A. Formation, optical and electrical properties of new semiconductor phase of calcium silicide on Si(111) / S.A. Dotsenko, K.N. Galkin, D.A. Bezbabny, D.L. Goroshko, N.G. Galkin // Physics Procedia. – 2012. – N_{2} 23. – C. 41.

3. Галкин, Н.Г. Формирование, оптические и электрические свойства Ca₃Si₄ и пленок двойных гетероструктур Si/Ca₃Si₄/Si(111) / Галкин Н.Г., Безбабный Д.А., Галкин К.Н., Доценко С.А., Чернев И.М., Вахрушев А.В. // Химическая физика и мезоскопия. – 2013. – Том 15, № 3. – С. 385.

4. Galkin, N G. Formation and optical properties of semiconducting thick Ca silicide films and Si/Ca_xSi/Si heterostructures on Si(111) substrate / N G. Galkin, D. A. Bez-

babny, K. N. Galkin, S. A. Dotsenko, Eunika Zielony, Robert Kudrawiec and Jan Misiewicz // Physica Status Solidi C, 10, № 12, 1819-1823, 2013.

5. Galkin, N. G. Structure and optical properties of Ca silicide films and Si/Ca₃Si₄/Si(111) double heterostructures / N. G. Galkin, D. A. Bezbabny, S. A. Dotsenko, K. N. Galkin, I. M. Chernev, E. A. Chusovotin, Peter Nemes-Incze, Laslo Dozsa, Bela Pech, T. S. Shamirzaev, A. K. Gutakovski // Solid State Phenomena. – 2013 (accepted in SSP 14.10.2013).

 Доценко, С. А. Исследование оптических и электрических свойств пленок Ca₃Si₄ на Si (111) / С. А. Доценко, Д. А. Безбабный, К. Н. Галкин, Н. Г. Галкин, Д. Л. Горошко // Материалы конференции «Молодежь XXI века: шаг в будущее». – 2012. – Т.6. – С. 8.

7. Доценко, С. А. Исследование роста полупроводниковых силицидов кальция на Si (111) / С. А. Доценко, Д. А. Безбабный, Н. Г. Галкин, Д. В. Фомин // Сборник тезисов конференции «Физика: фундаментальные и прикладные исследования, образование». – 2012. – С. 48.

 Галкин, Н.Г. Формирование и оптические свойства пленок Ca₂Si и Ca₃Si₄ на Si подложках / Н. Г. Галкин, Д.А. Безбабный, К.Н. Галкин, С.А. Доценко // Вестник ТОГУ. – 2013. – С. 63.

9. Галкин, Н.Г. Формирование и оптические свойства пленок Ca₂Si и Ca₃Si₄ на Si подложках / Н. Г. Галкин, Д.А. Безбабный, К.Н. Галкин, С.А. Доценко // Сборник тезисов конференции «Физика: фундаментальные и прикладные исследования, образование». – 2013. – С. 107.

Безбабный Дмитрий Александрович

Исследование формирования, структуры и свойств пленок полупроводниковых силицидов кальция на Si (111)

Автореферат

Подписано к печати "" 20	г. Усл. п. л	Уч. изд. л
Формат	Тираж 100.	Заказ

Издано ИАПУ ДВО РАН. 690041, г. Владивосток, ул. Радио, 5. Отпечатано группой оперативной полиграфии ИАПУ ДВО РАН. 690041, г. Владивосток, ул. Радио, 5.