Аннотация проекта, выполненного в рамках ФЦП Научные и научнопедагогические кадры инновационной России» на 2009-2013 гг.

Государственный контракт № 02.740.11.0226 от 07 июля 2009 г.

Тема: «Исследование процессов взаимодействия лазерного излучения с нелинейными оптическими средами и разработка физических принципов построения новых когерентно-оптических информационно-измерительных и диагностических систем»

Исполнитель: Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (статус государственного учреждения) (ИАПУ ДВО РАН)

Ключевые слова: нелинейные оптические среды, информационно-измерительные системы, динамическая голограмма, волоконные световоды, волоконные брэгговские решетки, волоконно-оптические датчики, плазменный фронт, лазерный пробой.

1. Цель проекта

Настоящий проект направлен на решение задач, связанных с развитием фундаментальных и прикладных исследований мирового уровня в области изучения взаимодействия лазерного излучения с микроструктурированными, слоистыми, сплошными и нанокомпозитными средами, создания новых методов диагностики и мониторинга технических и природных объектов, океана и атмосферы, разработки новых материалов для лазерной физики на основе биомиметических технологий, подготовки и закрепления в сфере науки и образования научных и научно-педагогических кадров, формирования новых эффективных и жизнеспособных научных коллективов. При выполнении НИР особое внимание уделено развитию стратегий по поддержке молодых специалистов, ученых и преподавателей посредством создания благоприятных условий для развития и реализации их творческого потенциала за счет использования научно-технического потенциала головной организации и партнеров по НОЦ, обладающих современной материально-технической базой, включая уникальные экспериментальные стенды и установки. Выполнение данной НИР обеспечивает улучшение качественного состава научных и научно-педагогических кадров в Дальневосточном регионе, способствует развитию эффективной системы мотивации научного труда и стимулированиию притока молодежи в сферу науки, образования и высоких технологий, а также позволяет выработать высокоэффективные стратегии развития системы обновления научных и научно-педагогических кадров, при этом полученные в ходе выполнения НИР новые фундаментальные знания будут способствовать значительному повышению престижа российской науки в азиатско-тихоокеанском регионе.

2. Основные результаты проекта

1) Краткое описание основных полученных результатов (основные теоретические и экспериментальные результаты, фактические данные, обнаруженные взаимосвязи и закономерности);

В ходе выполнения работ над настоящим проектом были разработаны:

- методика фемтосекундной эмиссионной спектроскопии жидкости и атмосферы, основанная на результатах изучения механизмов формирования фемтосекундного лазерно-индуцированного пробоя в воде, атмосфере, водном аэрозоле и биологических объектах;
- методика регистрации сверхмалых физических величин с помощью адаптивной волоконнооптической измерительной системы на основе динамических голограмм, сформированных в фоторефрактивных кристаллах в ортогональной геометрии;
- рефлектометрический метод опроса и мультиплексирования сигналов волоконных брэгговских решеток с применением дифференциальной регистрации сигналов и гибридного спектрально-временного разделения измерительных каналов, создан макет волоконно-оптической измерительной системы для регистрации деформационных и температурных распределений на основе волоконных брэгговских решеток с применением метода оптической временной рефлектометрии и дифференциальной регистрации сигналов чувствительного элемента;

- метод мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной частоты для регистрации параметров деформации изгиба, создан макет распределенного волоконно-оптического измерительного преобразователя изгибных деформаций на основе волоконных световодов, работающих в волноводном режиме с экстремально низким значением приведенной частоты;
- методика мониторинга параметров вибрационных процессов с применением волоконнооптических датчиков вибраций на основе волоконных волноводных структур с локально модифицированным диаметром;
- методика определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах;

2) Указание основных характеристик созданной научной продукции;

- на основе разработанной методики регистрации сверхмалых физических величин с помощью адаптивной волоконно-оптической измерительной системы создан макет многоканальной адаптивной волоконно-оптической измерительной системы (максимальное количество измерительных каналов, реализуемых на одном кристалле не менее 10, уровень сигнал/шум в каждом измерительном канале не менее 20 дБ, чувствительность в каждом измерительном канале не хуже $5 \cdot 10^{-8}$ рад· $(Bт/\Gamma \mathfrak{q})^{0.5}$, уровень перекрестных шумов между каналами не более 20 дБ), а также макет адаптивного волоконно-оптического сенсора на основе одномодового и многомодового волоконного световода и динамических ортогональных голограмм, формируемых в фоторефрактивном кристалле в результате двух- и трех-волнового взаимодействия (Чувствительность не хуже $2 \cdot 10^{-8}$ рад· $(Bт/\Gamma \mathfrak{q})^{0.5}$, частота отсечки медленных флуктуаций фазы при интенсивности 0.2 Вт/мм², не менее 300 $\Gamma \mathfrak{q}$.);
- параметры разработанного макета волоконно-оптической измерительной системы для регистрации деформационных и температурных распределений на основе волоконных брэгговских решеток с применением метода оптической временной рефлектометрии и дифференциальной регистрации сигналов чувствительного элемента составляют регистрация спектрального сдвига резонансной длины волны опрашиваемой волоконной брэгговской решетки с точностью не хуже 0,08 нм, регистрация сигналов не менее 100 волоконных брэгговских решеток, записанных в единой волоконной линии);
- реализован макет измерительного преобразователя на основе метода мониторинга изгибных деформаций с использованием волоконных световодов с экстремально низким значением приведенной частоты со следующими характеристиками: амплитудная чувствительность волоконного световода к макроизгибу в не менее чем в 150 раз превосходит таковую по сравнению со случаем возбуждения одномодового волоконного световода в стандартных условиях с приведенной частотой V~2.4;
- на основе разработанной методики создан макет измерительного комплекса для исследования массоразмерных и динамических характеристик наноразмерных объектов со следующими характеристиками: минимальный объем исследуемой жидкой гетерогенной среды $\leq 3 \cdot 10^{-9} \mathrm{m}^3$, определяемые линейные размеры наноразмерных объектов и их конгломератов ≥ 50 нм, температурный диапазон проведения измерений: 0-90 C°, количество циклов проведения измерений в секунду 50 изм/с $\div 1000$ изм/с.
- 3) Описание новизны научных решений; Полученные результаты являются новыми

4) Сопоставление с результатами аналогичных работ, определяющими мировой уровень.

Полученные результаты сопоставимы с результатами аналогичных работ, определяющих мировой уровень, а по ряду исследований - методика регистрации сверхмалых физических величин с помощью адаптивной волоконно-оптической измерительной системы на основе динамических голограмм и методика мониторинга параметров вибрационных процессов с применением волоконно-оптических датчиков вибраций на основе волоконных волноводных структур с локально модифицированным диаметром, превосходящими таковой.

3. Назначение и область применения результатов проекта

1) Описание областей применения полученных результатов (области науки и техники; отрасли промышленности и социальной сферы, в которых могут или уже используются полученные результаты или созданная на их основе инновационная продукция);

Полученные в ходе выполнения работы результаты быть с успехом применены для решения существующих в настоящее время научно-исследовательских задач, связанных с исследованием характеристик наноразмерных объектов как биологического, так и иного происхождения, исследованием сверхмалых физических величин и измерения физических полей деформации природных и техногенных объектов. Решения, полученные в ходе работ над проектом, могут быть положены в основу новых перспективных измерительных систем различного назначения, предназначенных для решения указанных выше научных и научно-технических задач.

2) Описание направлений практического внедрения полученных результатов или перспектив их использования;

Полученные результаты в настоящий момент используются в образовательных процессах в ВУЗах и иных образовательных учреждениях Дальневосточного региона, в частности, при составлении учебно-методических материалов. Полученные результаты легли в основу новых перспективных образовательных программ, разработанных в ходе выполнения настоящего проекта. Кроме того, планируется практическая реализация разработанных метрологических методик, например, при создании экспериментальных образцов измерительных преобразователей и измерительных систем на их основе для исследования различных физических величин.

3) Оценка или прогноз влияния полученных результатов на развитие научнотехнических и технологических направлений; разработка новых технических решений; на изменение структуры производства и потребления товаров и услуг в соответствующих секторах рынка и социальной сферы.

Полученные результаты окажут положительное влияние на развитие научно-технических и технологических направлений. Как отмечалось выше, применение разработанных в ходе выполнения настоящей НИР метрологических методик позволит обеспечить стимул к развитию научно-технического направления, связанного с исследованием характеристик наноразмерных объектов как биологического, так и иного происхождения, исследованием сверхмалых физических величин и измерения физических полей деформации природных и техногенных объектов. При этом применение технических решений, полученных в ходе выполнения настоящей НИР, обеспечит повышение технологического уровня при создании действующих образцов указанных измерительных преобразователей и измерительных систем.

4) Описание ожидаемых социально-экономических и др. эффектов от использования товаров и услуг, созданных на основе полученных результатов (повышение производительности труда, снижение материало- и энергоёмкости производства, уменьшение отрицательного техногенного воздействия на окружающую среду, снижение риска смертности, повышение качества жизни и т.п.).

Реализация указанных измерительных преобразователей и систем на их основе позволит обеспечить существенное повышение уровня научных исследований, направленных на получение новых знаний о физических явлениях взаимодействия лазерного излучения с микроструктурированными, слоистыми, сплошными и нанокомпозитными средами, обеспечит развитие новых когерентно-оптических методов диагностики и мониторинга технических и природных объектов, океана и атмосферы, разработку новых материалов для лазерной физики на основе биомиметических технологий. При этом будет обеспечена подготовка и закрепление в сфере науки и образования научных и научно-педагогических кадров, а также формирование новых эффективных и жизнеспособных научных коллективов на Дальнем Востоке России.

5) Описание существующих или возможных форм коммерциализации полученных результатов: организация производства продукции и/или оказание услуг, в том числе с образованием нового юридического лица или без него; заключение лицензионных договоров, заключение договоров уступки прав на РИД, либо указать: «Коммерциализация проектом не предусмотрена».

К возможным формам коммерциализации полученных разработок следует отнести заключение лицензионных договоров и договоров прав уступки на результаты интеллектуальной деятельности.

6) Описание видов новой и усовершенствованной продукции (услуги), которые могут быть созданы или уже созданы на основе полученных результатов интеллектуальной деятельности (РИД); указание предполагаемых или фактических рынков сбыта (с указанием сегмента, емкости и доли рынка и прогноза развития рынков сбыта на 5 лет), прогнозируемых или фактических объемов продаж на внутреннем и внешних рынках, предполагаемых сроков окупаемости.

К числу продукции, которые созданы на основе полученных результатов, помимо прочего, следует отнести разработанный при выполнении настоящей НИР принципиально новый рефлектометрический метод регистрации и мультиплексирования сигналов от волоконных брэгговских решеток с применением стандартного и широкодоступного рефлектометрического оборудования позволяет радикально снизить затраты на построение системы мониторинга на основе ВБР. Как показывают технико-экономические оценки, реализация данного метода приведет к 4 - 5 кратному снижению стоимости измерительной системы на основе ВБР по сравнению с ближайшими коммерчески доступными аналогами.

4. Достижения молодых исследователей – участников Проекта

В проекте принимали участие молодые исследователи ИАПУ ДВО РАН к.ф.-м.н. Дышлюк Антон Владимирович и аспиранты Гурбатов Станислав Олегович и Кучмижак Александр Игоревич. При их непосредственном участии удалось разработать метод мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной частоты, а также методику мониторинга параметров вибрационных процессов с применением волоконно-оптических датчиков вибраций на основе волоконных волноводных структур с локально модифицированным диаметром, соответствующие мировому уровню в области разработки перспективных измерительных систем на основе волоконной оптике. Под руководством и непосредственном участии д.ф.-м.н. Витрика Олега Борисовича и аспиранта Краевой Натальи Петровны была разработана методика определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах. Полученные результаты дают возможность дальнейшего развития разработок, связанных с извлечением количественной информации о параметрах наноразмерных объектов с применением элементной базы оптики и микроэлектроники.

5. Опыт закрепления молодых исследователей – участников Проекта в области науки, образования и высоких технологий

В ходе выполнения Проекта было зачислено в аспирантуру 12 человек. Кроме того, 18 человек (включая студентов и аспирантов) были трудоустроены лаборантами в лаборатории прецизионных методов оптических измерений Института автоматики и процессов управления ДВО РАН и Дальневосточного Федерального университета.

Основные проблемы, возникшие в ходе закрепления молодых исследователей в научных и учебных организациях, связаны с низким уровнем стипендии аспирантов, что снижает привлекательность поступления в аспирантуру выпускников вузов, а также с недостаточным количеством мест в общежитии, что делает затруднительным трудоустройство иногородних молодых сотрудников.

6. Перспективы развития исследований

1) Информация о том, насколько участие в ФЦП способствовало формированию новых исследовательских партнерств. Участвует ли НОЦ в проектах по 7-й рамочной Программе Евросоюза (с указанием названия проектов и перечня партнеров по ним).

Участие коллектива исполнителей настоящего проекта, выполняемого в рамках ФЦП, способствовало формированию и укреплению устойчивых исследовательских партнерств с научными группами Университета Восточной Финляндии (Финляндия), Физико-технического института им. А.Ф.Иоффе (Санкт-Петербург, Россия), Технического университета г. Лодзь (Польша), Института им. Карно Национального центра научных исследований (Франция), Институтом автоматики и электрометрии СО РАН (Новосибирск), Техническим университетом г. Далянь (Китай). К настоящему моменту Институт подал заявку на участие в программе ERA.Net RUS.

2) Краткая информация о проектах НОЦ по аналогичной тематике.

Коллектив исполнителей проекта участвует в следующих проектах, близких по тематике: «Векторное многоволновое взаимодействие на ортогональных динамических голограммах в нелинейных оптических кристаллах» (АВЦП, Минобрнауки), «Разработка физических принципов высокоразрешающей интерферометрической ближнепольной оптической микроскопии с применением апертурного зонда на основе волоконного резонатора Фабри-Перо» (РФФИ), «Разработка физических основ дистанционного оптического метода мониторинга параметров гидроакустических колебаний» (РФФИ).

3) Информация о том, сотрудничество с какими странами и исследовательскими центрами может способствовать наибольшей отдаче для развития в России технологий в области исследования, а также для выхода российской продукции на региональные и глобальные рынки.

Считаем, что наибольшей отдаче для развития в России технологий в области исследования, а также для выхода российской продукции на региональные и глобальные рынки может способствовать сотрудничество с

- Институтом им. В. Шотки Технического университета г. Мюнхена, Германия (Группа экспериментального исследования физики полупроваодников);
- Национальным университетом им. Сунь-Ять Сена, Тайвань (Департамент оптических материалов и оптоэлектроники).

7. Охраноспособные результаты интеллектуальной деятельности (РИД), полученные в рамках исследования, разработки

No	Вид охраняе-	Название	Вид ох-	№ доку-	Дата выдачи	Страна па-
	мого РИД		ранного	мента/	документа/дата	тентования
			документа	№заявки	подачи заявки	
1	Изобретение	Способ регист-	патент	2413259	11.01.2011	РФ
		рации сигналов				
		измерительных				
		преобразователей				
		на основе воло-				
		конных брэггов-				
		ских решеток,				
		записанных в				
		едином волокон-				
		ном световоде				

8. Список публикаций в рамках проекта

No	Ф.И.О.	Наимено-	Наименование	Реквизиты	Статус	Краткое описание
----	--------	----------	--------------	-----------	--------	------------------

	участника	вание пуб-	публикации	издания,	журнала	связи содержания
	проекта	ликации на русском языке	на языке оригинала (для иностранных публикаций)	опублико- вавшего работу	(список ВАК, другой)	публикации с результатами проекта
1	Ромашко Р.В., Кульчин Ю.Н.	Многока- нальная адаптивная интерферо- метрическая система	Multi-channel adaptive interfe- rometry system	J. of Russian Laser Re- search, 2010. Vol.31. No.1 – P.55-60.	Список ВАК	Работы в раках разра- ботки методики регист- рации сверхмалых физи- ческих величин с помо- щью адаптивной воло- конно-оптической изме- рительной системы на основе динамических голограмм
2	Кульчин Ю.Н., Витрик О.Б., Ланцов А.Д., Краева Н.П.	Корреляци- онный метод обработки картин дина- мического рассеяния света мало- размерными частицами основанный на процедуре пространст- венного ус- реднения данных		Автометрия 2010, т.46, №3, с.95-100.	Список ВАК	Работы по разработке методики определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах
4	Букин О.А., Голик С.С., Ильин А.А., Соколова Е.Б.	Взаимодействие гигаваттных лазерных импульсов с жидкими средами. Часть 1. Взрывное вскипание крупных изолированных водных капель		Оптика атмо- сферы и океана, том 23, 2010, 07, стр.536-542.	Список ВАК	Работы по разработке методики фемтосекунд- ной эмиссионной спек- троскопии жидкости и атмосферы
5	Кульчин Ю.Н., Витрик О.Б., Ланцов А.Д.	Одномерная волоконно- оптическая измеритель- ная систем томографи- ческого типа на основе измеритель- ных линий с интегральной чувствитель- ностью	One-dimensional tomographic-type fiber-optic mea- surement system based on measur- ing lines with integral sensitivity	Measurement Techniques. – Vol. 53. – No. 5. – 2010. – pp. 490-494.	Список ВАК	Работы по разработке методики определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах
6	Кульчин Ю.Н., Витрик О.Б., Безвербный А.В., Дыш- люк А.В., Кучмижак	Интерферо- метрический зонд для сис- тем ближне- польной оп- тической микроскопии		Письма в ЖТФ. 2010. том 36. вып. 13. с.31-35.	Список ВАК	Работы по разработке метода мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной

	A.A.					частоты
7	Кульчин Ю.Н.,. Витрик О.Б, Ланцов А.Д.	Применение корреляци- онного мето- да обработки «кипящих» спекловых полей для измерения поперечного смещения объекта		Метрология. №2. 2010. с. 35-39.	Список ВАК	Работы по разработке методики определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах
8	Кульчин Ю.Н., Витрик О.Б., Дыш- люк А.В., Гурбатов С.О.	Метод регистрации деформаций изгиба с применением волоконных световодов с низким значением приведенной частоты		Измерительная техника. №2. 2010. с.47-51.	Список ВАК	Работы по разработке метода мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной частоты
9	Ромашко Р.В., Кульчин Ю.Н.	Ортогональная геометрия взаимодействия волн в фоторефрактивном кристалле для линейной демодуляции фазы	Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation	Opt. Commun. 2010. V.283. №1. P.128- 131.		Работы в раках разра- ботки методики регист- рации сверхмалых физи- ческих величин с помо- щью адаптивной воло- конно-оптической изме- рительной системы на основе динамических голограмм
10	Ромашко Р.В., Кульчин Ю.Н.	Фоторефрактивное векторное волновое смешение в различных геометриях	Photorefractive vectorial wave mixing in differ- ent geometries	J. Opt. Soc. Am. B. 2010. V.27. №2. P.311-317.		Работы в раках разра- ботки методики регист- рации сверхмалых физи- ческих величин с помо- щью адаптивной воло- конно-оптической изме- рительной системы на основе динамических голограмм
11	Букин О.А., Нагорный И.Г., Ильин А.А.	Сверхзвуковые режимы расширения плазы в оптических пробоях атмосферы	Supersonic regimes of plasma expansion during optical breakdown in air	Appl. Phys. Lett. 96, 171501 (2010);		Работы по разработке методики фемтосекунд- ной эмиссионной спек- троскопии жидкости и атмосферы

9. Диссертации, представленные к защите в рамках проекта

No	Ф.И.О.	Наимено-	Вид дис-	Наимено-	Номер	Дата	Краткое опи-
	участника	вание	сертации	вание и	дис-	защиты	сание связи
	проекта	диссерта-	(канди-	шифр на-	серта-	диссер-	содержания
		ции	датская;	учной спе-	цион-	тации	диссертации с
			доктор-	циальности	НОГО	(факти-	результатами
			ская)		совета	ческая	проекта
						ИЛИ	
						плано-	

						вая да-	
						та)	
1	Ромашко Роман Вла- димирович	Физические основы по- строения сверхвысо- кочувстви- тельных адаптивных измеритель- ных систем на основе динамиче- ских голо- грамм	докторская	01.04.21 «Лазерная физика»	Д 005.007. 02	24.05. 2010	В основу диссертации положены результаты работы по разработке методика регистрации сверхмалых физических величин с помощью адаптивной волоконно-оптической измерительной системы на основе динамических голограмм
2	Вознесен- ский Сер- гей Сера- фимович	Биофизические характеристики и фотоника биоминеральных и биомиметических нанокомпозитных структур и материалов	докторская	03.01.02 «Биофизика»	Д 005.007. 02	04.06. 2011	В работе был использован ряд результатов, полученных при разработке методики определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах
3	Шмирко Константин Александ- рович	Методы лазерного зондирования в задачах изучения пространственно- временной изменчивости оптических и микрофизических параметров радиационно- активных компонентов атмосферы в переходной зоне материк-океан	кандидат-	01.04.21 «Лазерная физика»	Д 005.007. 02	29.12. 2009	В основу работы были положены результаты разработки методики фемтосекундной эмиссионной спектроскопии жидкости и атмосферы, основанная на результатах изучения механизмов формирования фемтосекундного лазерноиндуцированного пробоя в воде, атмосфере, водном аэрозоле и биологических объектах
4	Галкина Анна Ни- колаевна	Биофизические и оптические характеристики спикул морских глубоководных губок	кандидат- ская	03.00.02 «Биофизика»	Д 005.007. 02		В работе был использован ряд результатов, полученных при разработке методики определения массоразмерных и динамических харак-

5	Щербаков Александр Вячеславо- вич	Нелинейно- оптическое взаимодей- ствие лазер- ного излу- чения с ге- терогенны- ми жидко- фазными средами на основе на- ночастиц α-	кандидат- ская	01.04.21 «Ла- зерная физи- ка»	Д 005.007. 02	08.04. 2011	теристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах В работе был использован ряд результатов, полученных при разработке методики регистрации сверхмалых физических величин с помощью адаптивной волоконнооптической из-
		Al2O3					мерительной системы на основе динамических голограмм
6	Буланов Алексей Владими- рович	Режимы движения плазменных фронтов и динамика спектральных линий при оптическом пробое в газе и на поверхности конденсированных сред	кандидат- ская	01.04.21 «Лазерная физи- ка»	Д 005.007. 02	29.12. 2009	В основу работы были положены результаты разработки методики фемтосекундной эмиссионной спектроскопии жидкости и атмосферы, основанная на результатах изучения механизмов формирования фемтосекундного лазерноиндуцированного пробоя в воде, атмосфере, водном аэрозоле и биологических объектах
7	Коротенко Алексей Анатолье- вич	Принципы построения волоконно- оптических датчиков лазерной индуцированной флюоресценции и систем мониторинга морских акваторий на их основе	кандидат-	01.04.21 «Лазерная физика»	Д 005.007. 02	30.11. 2011	При подготовке работы были использованы результаты разработки методики фемтосекундной эмиссионной спектроскопии жидкости и атмосферы, основанная на результатах изучения механизмов формирования фемтосекундного лазерноиндуцированного пробоя в воде, атмосфере, водном аэрозоле и биологических объектах

8	Краева На-	Корреляци-	кандидат-	01.04.21 «Ла-	Д	30.11.	Работа была ос-	
	талья Пет-	онная обра-	ская	зерная физи-	005.007.	2011	нована на ре-	
	ровна	ботка спекл-		ка»	02		зультатах, полу-	
		сигналов					ченных при раз-	
		для измере-					работке методи-	
		ния харак-					ки определения	
		теристик					массоразмерных	
		наноразмер-					и динамических	
		ных объек-					характеристик	
		тов					наноразмерных	
							объектов и их	
							конгломератов в	
							жидких гетеро-	
							генных средах	

10. Выступления на конференциях

	T TT 0	**	**	**	T.0
$N_{\underline{0}}$	Ф.И.О.	Наименование доклада	Наименование	Название	Краткое опи-
	участника	на русском языке	доклада на язы-	конференции,	сание связи
	проекта		ке оригинала	дата и место	содержания
			(для междуна-	проведения	доклада с ре-
			родных конфе-		зультатами
			ренций)		проекта
1	Гурбатов С.О.	Амплитудная регистрация вибрационных процессов на основе одномодовых волоконных световодов с низкой приведенной частотой		Научная сессия НИЯУ МИФИ, г. Москва, 2011	При подготовке доклада на конференции использовались результаты разработки методики мониторинга параметров вибрационных процессов с применением волоконнооптических датчиков вибраций на основе волоконных волноводных структур с локально модифицированным диаметром.
2	Витрик О.Б.	Амплитудная модуляция направляемого излучения в одномодовых волоконных световодах при воздействии сейсмических сигналов	Amplitude modulation of guided light in single-mode optical fibers with low normalized frequency under the influence of seismic signals.	Asia-Pacific Conference on Fundamental Problems of Opto- and Micro- electronics, Seoul, 2010	При подготовке доклада на конференции использовались результаты разработки методики мониторинга параметров вибрационных процессов с применением волоконнооптических датчиков вибраций на основе волоконных волноводных структур с локально моди-

					фицированным
					диаметром.
3	Дышлюк А.В.	Волоконно-оптический метод мониторинга деформаций изгиба		Всероссийская конференция по волоконной оптике, г. Пермь, 2009	При подготовке доклада на конференции использовались результаты разработки метода мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной частоты.
4	Кульчин Ю.Н.	Метод регистрации деформаций изгиба с применением волоконных световодов с низким значением приведенной частоты.	Bending measure- ment technique based on optical fiber waveguide with low normalized frequency	Asia-Pacific Conference on Fundamental Problems of Op- to- and Micro- electronics, Vla- divostok, 2009	При подготовке доклада на конференции использовались результаты разработки метода мониторинга изгибных деформаций на основе использования волоконных световодов с экстремально низким значением приведенной частоты.
5	Краева Н.П.	Релаксация скорости неравновесных наночастиц в жидкостях	Relaxation of velocity of nonequilibrium nonoparticles in a liquid	International symposium on laser medical applications, Moscow, 2010.	При подготовке доклада на конференции использовались результаты разработки методики определения массоразмерных и динамических характеристик наноразмерных объектов и их конгломератов в жидких гетерогенных средах
9	Витрик О.Б.	Интерферометрический принцип ближнепольной оптической микроскопии с применением волоконного микрорезонатора Фабри-Перо		Всероссийская конференция по волоконной оптике, г. Пермь, 2009	При подготовке доклада на конференции использовались результаты разработки рефлектометрического метода опроса и мультиплексирования сигналов волоконных брэгговских решеток с применением дифференциальной регистрации сигналов и гибридного спектральновременного разделения измери-

					тельных каналов.
11	Кучмижак	Интерферометрический	Interferometric	Asia-Pacific	При подготовке
11	-				*
	A.A.	зонд для систем ближне-	probe for near-field		доклада на кон-
		польной оптической микро-	optical microscopy	Fundamental	ференции исполь-
		скопии		Problems of Op-	зовались резуль-
				to- and Micro-	таты разработки
				electronics,	рефлектометриче-
				Seoul, 2010	ского метода оп-
					роса и мультип-
					лексирования
					сигналов воло-
					конных брэггов-
					ских решеток с
					применением
					дифференциаль-
					ной регистрации
					сигналов и гиб-
					ридного спек-
					трально-
					временного раз-
					деления измери-
					тельных каналов.

11. Внедрение результатов проекта в образовательный процесс

$N_{\underline{0}}$	Наимено-	Тип про-	Уро-	Статус	Про-	Уровень	Потен-	Плани-
	вание об-	граммы	вень	про-	грамма	целевой	циаль-	руемое
	разова-			граммы	разрабо-	группы	ные за-	количе-
	тельной				тана в со-		казчики	ство
	програм-				ответст-		(гео-	слуша-
	МЫ				вии со		графия	телей (в
					стандар-		слуша-	год)
					TOM		телей)	
1	«Кванто-	основная	бака-	Новая	Стандар-	студен-	РΦ,	1000
	вая и оп-	образова-	лав-	про-	ТЫ	ты 4	страны	
	тическая	тельная	риат	грамма	третьего	курса	ATP	
	электро-	программа		для вуза	поколе-			
	ника»				ния			
2	«Элек-	основная	маги-	Новая	Стандар-	студен-	РΦ,	1000
	троника и	образова-	стра-	про-	ты	ты 5	страны	
	наноэлек-	тельная	тура	грамма	третьего	курса	ATP	
	троника»	программа		для вуза	поколе-			
					ния			

Руководитель работ по проекту

Директор ИАПУ ДВО РАН, чл.-корр. РАН 6 июня 2011 г. М.П. *М* Ю.Н.Кульчин